

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and
its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or	app
settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize	often
include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and	figures
that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings	and
features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Sams	Teach	Yourself
Oracle®
PL/SQL

in	10	Minutes
Ben	Forta

800	East	96th	Street,	Indianapolis,	Indiana	46240

Sams	Teach	Yourself	Oracle®	PL/SQL	in	10	Minutes

Copyright	©	2016	by	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or
otherwise,	without	written	permission	from	the	publisher.	No	patent	liability	is	assumed
with	respect	to	the	use	of	the	information	contained	herein.	Although	every	precaution	has
been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages	resulting
from	the	use	of	the	information	contained	herein.

ISBN-13:	978-0-672-32866-4
ISBN-10:	0-672-32866-6

Library	of	Congress	Control	Number:	2015910491

Printed	in	the	United	States	of	America

First	Printing	September	2015

Acquisitions	Editor
Mark	Taber

Managing	Editor
Kristy	Hart

Senior	Project	Editor
Betsy	Gratner

Copy	Editor
Paula	Lowell

Indexer
Lisa	Stumpf

Proofreader
Sarah	Kearns

Editorial	Assistant
Vanessa	Evans

Cover	Designer
Mark	Shirar

Senior	Compositor
Gloria	Schurick

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have
been	appropriately	capitalized.	Sams	Publishing	cannot	attest	to	the	accuracy	of	this
information.	Use	of	a	term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of
any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The
author	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or
entity	with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this
book	or	from	the	use	of	the	programs	accompanying	it.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents

Introduction

What	Is	This	Book?

Who	Is	This	Book	For?

Companion	Website

Conventions	Used	in	This	Book

1	Understanding	SQL

Database	Basics

What	Is	SQL?

Try	It	Yourself

Summary

2	Getting	Started	with	Oracle	and	PL/SQL

What	Is	Oracle?

Getting	Set	Up

Summary

3	Working	with	Oracle

Creating	a	Working	Environment

Making	the	Connection

A	Quick	Introduction	to	Oracle	SQL	Developer

Creating	and	Populating	the	Example	Tables

One	More	Look	at	Oracle	SQL	Developer

Summary

4	Retrieving	Data

The	SELECT	Statement

Retrieving	Individual	Columns

Retrieving	Multiple	Columns

Retrieving	All	Columns

Retrieving	Distinct	Rows

Using	Fully	Qualified	Table	Names

Using	Comments

Summary

5	Sorting	Retrieved	Data

Sorting	Data

Sorting	by	Multiple	Columns

Specifying	Sort	Direction

Summary

6	Filtering	Data

Using	the	WHERE	Clause

The	WHERE	Clause	Operators

Summary

7	Advanced	Data	Filtering

Combining	WHERE	Clauses

Using	the	IN	Operator

Using	the	NOT	Operator

Summary

8	Using	Wildcard	Filtering

Using	the	LIKE	Operator

Tips	for	Using	Wildcards

Summary

9	Searching	Using	Regular	Expressions

Understanding	Regular	Expressions

Using	Oracle	PL/SQL	Regular	Expressions

Summary

10	Creating	Calculated	Fields

Understanding	Calculated	Fields

Concatenating	Fields

Performing	Mathematical	Calculations

Summary

11	Using	Data	Manipulation	Functions

Understanding	Functions

Using	Functions

Summary

12	Summarizing	Data

Using	Aggregate	Functions

Aggregates	on	Distinct	Values

Combining	Aggregate	Functions

Summary

13	Grouping	Data

Understanding	Data	Grouping

Creating	Groups

Filtering	Groups

Grouping	and	Sorting

SELECT	Clause	Ordering

Summary

14	Working	with	Subqueries

Understanding	Subqueries

Filtering	by	Subquery

Using	Subqueries	as	Calculated	Fields

Summary

15	Joining	Tables

Understanding	Joins

Creating	a	Join

Summary

16	Creating	Advanced	Joins

Using	Table	Aliases

Using	Different	Join	Types

Using	Joins	with	Aggregate	Functions

Using	Joins	and	Join	Conditions

Summary

17	Combining	Queries

Understanding	Combined	Queries

Creating	Combined	Queries

Summary

18	Inserting	Data

Understanding	Data	Insertion

Inserting	Complete	Rows

Inserting	Retrieved	Data

Summary

19	Updating	and	Deleting	Data

Updating	Data

Deleting	Data

Guidelines	for	Updating	and	Deleting	Data

Summary

20	Creating	and	Manipulating	Tables

Creating	Tables

Updating	Tables

Deleting	Tables

Renaming	Tables

Summary

21	Using	Views

Understanding	Views

Using	Views

Summary

22	Working	with	Stored	Procedures

Understanding	Stored	Procedures

Why	Use	Stored	Procedures

Using	Stored	Procedures

Summary

23	Using	Cursors

Understanding	Cursors

Working	with	Cursors

Summary

24	Using	Triggers

Understanding	Triggers

Creating	Triggers

Dropping	Triggers

Using	Triggers

Summary

25	Managing	Transaction	Processing

Understanding	Transaction	Processing

Controlling	Transactions

Summary

26	Managing	Security

Understanding	Access	Control

Managing	Users

Summary

A	The	Example	Tables

Understanding	the	Sample	Tables

B	Oracle	PL/SQL	Datatypes

String	Datatypes

Numeric	Datatypes

C	Oracle	PL/SQL	Reserved	Words	and	Keywords

Index

About	the	Author

Ben	Forta	has	three	decades	of	experience	in	the	computer	industry	in	product	design	and
development,	support,	training,	and	marketing.	As	Adobe	Inc.’s	Senior	Director	of
Education	Initiatives,	he	spends	a	considerable	amount	of	time	teaching,	talking,	and
writing	about	Adobe	products,	coding	and	application	development,	creativity,	and	digital
literacy	and	provides	feedback	to	help	shape	the	future	direction	of	Adobe	products.

Ben	is	the	author	of	more	than	40	books,	including	the	world’s	bestselling	title	on	SQL,	as
well	as	titles	on	topics	as	diverse	as	Regular	Expressions,	mobile	development,	and	Adobe
ColdFusion.	More	than	750,000	copies	of	his	books	are	in	print	in	English,	and	titles	have
been	translated	into	fifteen	languages.	Many	of	these	titles	are	used	as	textbooks	in
colleges	and	universities	worldwide.

Education	is	Ben’s	passion.	Between	writing,	lecturing,	and	in-classroom	experience,	Ben
has	dedicated	his	professional	and	personal	lives	to	teaching,	inspiring,	and	sharing	his
love	for	technology	and	creativity.	He	is	immensely	grateful	to	have	had	the	opportunity	to
share	with	millions	worldwide.

Ben	is	also	a	successful	entrepreneur	with	experience	creating,	building,	and	selling	start-
ups.	He	is	a	sought-after	public	speaker,	a	writer,	and	a	blogger,	and	he	presents	on
education	and	development	topics	worldwide.

Acknowledgments

It’s	been	sixteen	years	since	the	publication	of	my	first	book	on	SQL,	Sams	Teach	Yourself
SQL	in	10	Minutes.	That	book	was	met	with	such	positive	feedback	that	it	has	been
updated	three	times,	has	spawned	four	spin-off	titles	(the	most	recent	being	the	book	you
are	reading	right	now),	and	has	been	translated	more	than	a	dozen	times.	In	all	of	its
various	flavors	and	iterations,	this	little	book	has	helped	hundreds	of	thousands	learn	the
basics	of	SQL.	So,	first	and	foremost,	thanks	to	all	of	you	who	have	trusted	me	and	this
book	over	the	years;	your	support	is	both	incredibly	humbling	and	a	source	of	great	pride.

I	am	blessed	with	some	very	vocal	and	opinionated	readers	who	regularly	share	ideas,
comments,	suggestions,	and	occasionally	criticism.	These	books	continue	to	improve
directly	in	response	to	that	feedback,	so	thanks,	and	please	keep	it	coming.

Thanks	to	the	numerous	schools	and	colleges	the	world	over	who	have	made	this	series
part	of	their	curriculum.	Seeing	students	use	my	writing	as	part	of	their	studies	never
ceases	to	thrill.

And	finally,	thanks	to	my	partners	at	Pearson	with	whom	I’ve	now	published	more	than	40
titles,	and	without	whose	support	none	would	have	seen	the	light	of	day.	In	particular,
thanks	to	Betsy	Gratner	for	shepherding	this	book	through	the	process,	Paula	Lowell	for
her	editing	help,	and	Mark	Taber	for	once	again	patiently	and	encouragingly	supporting
whatever	I	toss	his	way.

Ben	Forta

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value
your	opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what
areas	you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to
pass	our	way.

We	welcome	your	comments.	You	can	email	or	write	to	let	us	know	what	you	did	or	didn’t
like	about	this	book—as	well	as	what	we	can	do	to	make	our	books	better.

Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this
book.

When	you	write,	please	be	sure	to	include	this	book’s	title	and	author	as	well	as	your	name
and	email	address.	We	will	carefully	review	your	comments	and	share	them	with	the
author	and	editors	who	worked	on	the	book.

Email:			feedback@samspublishing.com

Mail:					Sams	Publishing
														ATTN:	Reader	Feedback
														800	East	96th	Street
														Indianapolis,	IN	46240	USA

mailto:feedback@samspublishing.com

Reader	Services

Visit	our	website	and	register	this	book	at	informit.com/register	for	convenient	access	to
any	updates,	downloads,	or	errata	that	might	be	available	for	this	book.

http://informit.com/register

Introduction

Oracle	Database	(or	Oracle	RDBMS)	is	so	prevalent	and	well	established	that	most	users
simple	refer	to	it	as	“Oracle”	(ignoring	the	fact	that	Oracle,	the	company,	produces	other
software,	and	even	hardware).	Oracle	Database	(I’ll	do	what	most	do	and	just	call	it
“Oracle”	to	simplify	things)	has	been	around	since	the	1970s,	making	it	one	of	the	earliest
database	management	systems.	Oracle	is	one	of	the	most	used	database	management
systems	(DBMS)	in	the	world.	In	fact,	most	surveys	rank	it	as	#1	in	database	use	and
popularity	worldwide,	especially	among	corporate	users,	and	over	the	years	it	has	proven
itself	to	be	a	solid,	reliable,	fast,	and	trusted	solution	to	all	sorts	of	data	storage	needs.

That’s	the	good	news.	The	not-so-good	news	is	that	getting	started	with	Oracle	can	be
tricky,	especially	when	compared	to	some	of	the	alternative	DBMSs.	Oracle’s	power,
capabilities,	security,	and	more	are	an	important	part	of	why	it	is	so	trusted.	But	that
makes	installation,	configuration,	and	even	the	tooling	a	little	more	complex,	too.	On	top
of	that,	Oracle’s	implementation	of	the	SQL	language,	called	PL/SQL,	tends	to	differ
subtly	from	other	SQL	implementations,	and	this	can	make	using	Oracle	just	a	bit	trickier.

What	Is	This	Book?
This	book	is	based	on	my	best-selling	Sams	Teach	Yourself	SQL	in	10	Minutes.	That	book
has	become	one	of	the	most	used	SQL	tutorials	in	the	world,	with	an	emphasis	on	teaching
what	you	really	need	to	know—methodically,	systematically,	and	simply.	However,	as
popular	and	as	successful	as	that	book	is,	it	does	have	some	limitations:

	In	covering	all	the	major	DBMSs,	coverage	of	DBMS-specific	features	and
functionality	had	to	be	kept	to	a	minimum.

	To	simplify	the	SQL	taught,	the	lowest	common	denominator	had	to	be	found—SQL
statements	that	would	(as	much	as	possible)	work	with	all	major	DBMSs.	This
requirement	necessitated	that	better	DBMS-specific	solutions	not	be	covered.

	Although	basic	SQL	tends	to	be	rather	portable	between	DBMSs,	more	advanced
SQL	most	definitely	is	not.	As	such,	that	book	could	not	cover	advanced	topics,	such
as	triggers,	cursors,	stored	procedures,	access	control,	transactions,	and	more,	in	any
real	detail.

And	that	is	where	this	book	comes	in.	Sams	Teach	Yourself	Oracle	PL/SQL	in	10	Minutes
builds	on	the	proven	tutorials	and	structure	of	Sams	Teach	Yourself	SQL	in	Ten	Minutes,
without	getting	bogged	down	with	anything	but	Oracle	and	PL/SQL.	Starting	with	simple
data	retrieval	and	working	toward	more	complex	topics,	including	the	use	of	joins,
subqueries,	regular	expressions,	full	text-based	searches,	stored	procedures,	cursors,
triggers,	table	constraints,	and	much	more.	You’ll	learn	what	you	need	to	know
methodically,	systematically,	and	simply—in	highly	focused	lessons	designed	to	make	you
immediately	and	effortlessly	productive.

Who	Is	This	Book	For?
This	book	is	for	you	if

	You	are	new	to	SQL.

	You	are	just	getting	started	with	Oracle	PL/SQL	and	want	to	hit	the	ground	running.

	You	want	to	quickly	learn	how	to	get	the	most	out	of	Oracle	and	PL/SQL.

	You	want	to	learn	how	to	use	Oracle	in	your	own	application	development.

	You	want	to	be	productive	quickly	and	easily	using	Oracle	without	having	to	call
someone	for	help.

It	is	worth	noting	that	this	book	is	not	intended	for	all	readers.	If	you	are	an	experienced
SQL	user,	then	you	might	find	the	content	in	this	book	to	be	too	elementary.	However,	if
the	preceding	list	describes	you	and	your	needs	relative	to	Oracle,	you’ll	find	Sams	Teach
Yourself	Oracle	PL/SQL	in	10	Minutes	to	be	the	fastest	and	easiest	way	to	get	up	to	speed
with	Oracle.

Companion	Website
This	book	has	a	companion	website	at	forta.com/books/0672328666.	Visit	the
site	to

	Access	table	creation	and	population	scripts	for	creating	the	example	tables	used
throughout	this	book

	Visit	the	online	support	forum

	Access	online	errata	(if	one	might	be	required)

	Find	other	books	that	might	be	of	interest	to	you

Conventions	Used	in	This	Book
This	book	uses	different	typefaces	to	differentiate	between	code	and	regular	English,	and
also	to	help	you	identify	important	concepts.

Text	that	you	type	and	text	that	should	appear	on	your	screen	appears	in	monospace
type.	It	looks	like	this	to	mimic	the	way	text	looks	on	your
screen.

Placeholders	for	variables	and	expressions	appear	in	monospace	italic	font.	You
should	replace	the	placeholder	with	the	specific	value	it	represents.

This	arrow	()	at	the	beginning	of	a	line	of	code	means	that	a	single	line	of	code	is	too
long	to	fit	on	the	printed	page.	Continue	typing	all	the	characters	after	the	 	as	if	they
were	part	of	the	preceding	line.

Note

A	Note	presents	interesting	pieces	of	information	related	to	the	surrounding
discussion.

http://forta.com/books/0672328666

Tip

A	Tip	offers	advice	or	teaches	an	easier	way	to	do	something.

Caution

A	Caution	advises	you	about	potential	problems	and	helps	you	steer	clear	of
disaster.

New	Term	sidebars	provide	clear	definitions	of	new,	essential	terms.

Input

The	Input	icon	identifies	code	that	you	can	type	in	yourself.	It	usually	appears	by	a	listing.

Output

The	Output	icon	highlights	the	output	produced	by	running	Oracle	PL/SQL	code.	It
usually	appears	after	a	listing.

Analysis

The	Analysis	icon	alerts	you	to	the	author’s	line-by-line	analysis	of	input	or	output.

Lesson	1.	Understanding	SQL

In	this	lesson,	you’ll	learn	about	databases	and	SQL,	prerequisites	to	learning	about
Oracle	and	PL/SQL.

Database	Basics
The	fact	that	you	are	reading	this	book	indicates	that	you,	somehow,	need	to	interact	with
databases.	And	so	before	diving	into	Oracle	and	its	implementation	of	the	SQL	language
(PL/SQL),	it	is	important	that	you	understand	some	basic	concepts	about	databases	and
database	technologies.

Whether	you	are	aware	of	it	or	not,	you	use	databases	all	the	time.	Each	time	you	select	a
name	from	your	email	or	smartphone	address	book,	you	use	a	database.	When	you
conduct	a	search	on	an	Internet	search	site,	you	use	a	database.	When	you	log	in	to	your
network	at	work,	you	validate	your	name	and	password	against	a	database.	Even	when
you	use	your	ATM	card	at	a	cash	machine,	you	use	databases	for	PIN	verification	and
balance	checking.

But	even	though	we	all	use	databases	all	the	time,	much	confusion	remains	about	what
exactly	a	database	is.	This	is	especially	true	because	different	people	use	the	same
database	terms	to	mean	different	things.	Therefore,	a	good	place	to	start	our	study	is	with	a
list	and	explanation	of	the	most	important	database	terms.

Tip:	Reviewing	Basic	Concepts

What	follows	is	a	brief	overview	of	some	basic	database	concepts.	It	is	intended	to
either	jolt	your	memory	if	you	already	have	some	database	experience,	or	to
provide	you	with	the	absolute	basics	if	you	are	new	to	databases.	Understanding
databases	is	an	important	part	of	mastering	Oracle,	and	you	might	want	to	find	a
good	book	on	database	fundamentals	to	brush	up	on	the	subject	if	needed.

What	Is	a	Database?
The	term	database	is	used	in	many	different	ways,	but	for	our	purposes	a	database	is	a
collection	of	data	stored	in	some	organized	fashion.	The	simplest	way	to	think	of	it	is	to
imagine	a	database	as	a	filing	cabinet.	The	filing	cabinet	is	simply	a	physical	location	to
store	data,	regardless	of	what	that	data	is	or	how	it	is	organized.

Database

A	container	(usually	a	file	or	set	of	files)	to	store	organized	data.

Caution:	Misuse	Causes	Confusion

People	often	use	the	term	database	to	refer	to	the	database	software	they	are
running.	This	is	incorrect,	and	it	is	a	source	of	much	confusion.	Database	software
is	actually	called	the	Database	Management	System	(or	DBMS).	The	database	is
the	container	created	and	manipulated	via	the	DBMS.	A	database	might	be	a	file
stored	on	a	hard	drive,	but	it	might	not.	For	the	most	part,	this	is	not	even
significant	because	you	never	access	a	database	directly	anyway;	you	always	use
the	DBMS	and	it	accesses	the	database	for	you.

Tables
When	you	store	information	in	your	filing	cabinet,	you	don’t	just	toss	it	in	a	drawer.
Rather,	you	create	files	within	the	filing	cabinet,	and	then	you	file	related	data	in	specific
files.

In	the	database	world,	that	file	is	called	a	table.	A	table	is	a	structured	file	that	can	store
data	of	a	specific	type.	A	table	might	contain	a	list	of	customers,	a	product	catalog,	or	any
other	list	of	information.

Table

A	structured	list	of	data	of	a	specific	type.

The	key	here	is	that	the	data	stored	in	the	table	is	one	type	of	data	or	one	list.	You	would
never	store	a	list	of	customers	and	a	list	of	orders	in	the	same	database	table.	Doing	so
would	make	subsequent	retrieval	and	access	difficult.	Rather,	you	would	create	two	tables,
one	for	each	list.

Every	table	in	a	database	has	a	name	that	identifies	it.	That	name	is	always	unique—
meaning	no	other	table	in	that	database	can	have	the	same	name.

Note:	Table	Names

What	makes	a	table	name	unique	is	actually	a	combination	of	several	things,
including	the	database	name	and	table	name.	This	means	that	although	you	cannot
use	the	same	table	name	twice	in	the	same	database,	you	definitely	can	reuse	table
names	in	different	databases.

Tables	have	characteristics	and	properties	that	define	how	data	is	stored	in	them.	These
include	information	about	what	data	may	be	stored,	how	it	is	broken	up,	how	individual
pieces	of	information	are	named,	and	much	more.	This	set	of	information	that	describes	a
table	is	known	as	a	schema,	and	schema	describe	specific	tables	within	a	database,	as	well
as	entire	databases	(and	the	relationship	between	tables	in	them,	if	any).

Schema

Information	about	database	and	table	layout	and	properties.

Note:	Schema	or	Database?

Occasionally	schema	is	used	as	a	synonym	for	database	(and	schemata	as	a
synonym	for	databases).	While	unfortunate,	it	is	usually	clear	from	the	context
which	meaning	of	schema	is	intended.	In	this	book,	schema	refers	to	the
aforementioned	definition.

Columns	and	Datatypes
Tables	are	made	up	of	columns.	A	column	contains	a	particular	piece	of	information	in	a
table.

Column

A	single	field	in	a	table.	All	tables	are	made	up	of	one	or	more	columns.

The	best	way	to	understand	a	column	is	to	envision	database	tables	as	grids,	somewhat
like	spreadsheets.	Each	column	in	the	grid	contains	a	particular	piece	of	information.	In	a
customer	table,	for	example,	one	column	contains	the	customer	number,	another	contains
the	customer	name,	and	the	address,	city,	state,	and	Zip	Code	are	all	stored	in	their	own
columns.

Tip:	Breaking	Up	Data

It	is	extremely	important	to	break	data	into	multiple	columns	correctly.	For
example,	city,	state,	and	Zip	Code	should	always	be	separate	columns.	By	breaking
these	out,	it	becomes	possible	to	sort	or	filter	data	by	specific	columns	(for
example,	to	find	all	customers	in	a	particular	state	or	in	a	particular	city).	If	city	and
state	are	combined	into	one	column,	it	would	be	extremely	difficult	to	sort	or	filter
by	state.

Each	column	in	a	database	has	an	associated	datatype.	A	datatype	defines	what	type	of
data	the	column	can	contain.	For	example,	if	the	column	is	to	contain	a	number	(perhaps
the	number	of	items	in	an	order),	the	datatype	would	be	a	numeric	datatype.	If	the	column
were	to	contain	dates,	text,	notes,	currency	amounts,	and	so	on,	the	appropriate	datatype
would	be	used	to	specify	this.

Datatype

A	type	of	allowed	data.	Every	table	column	has	an	associated	datatype	that	restricts
(or	allows)	specific	data	in	that	column.

Datatypes	restrict	the	type	of	data	that	a	column	can	store	(for	example,	preventing	the
entry	of	alphabetical	characters	into	a	numeric	field).	Datatypes	also	help	sort	data
correctly,	and	play	an	important	role	in	optimizing	disk	usage.	As	such,	you	must	give
special	attention	to	picking	the	right	datatype	when	creating	tables.

Rows
Data	in	a	table	is	stored	in	rows;	each	record	saved	is	stored	in	its	own	row.	Again,
envisioning	a	table	as	a	spreadsheet	style	grid,	the	vertical	columns	in	the	grid	are	the	table
columns,	and	the	horizontal	rows	are	the	table	rows.

For	example,	a	customer’s	table	might	store	one	customer	per	row.	The	number	of	rows	in
the	table	is	the	number	of	records	in	it.

Row

A	record	in	a	table.

Note:	Records	or	Rows?

You	might	hear	users	refer	to	database	records	when	referring	to	rows.	For	the	most
part,	people	use	the	two	terms	interchangeably,	but	row	is	technically	the	correct
term.

Primary	Keys
Every	row	in	a	table	should	have	some	column	(or	set	of	columns)	that	uniquely	identifies
it.	A	table	containing	customers	might	use	a	customer	number	column	for	this	purpose,
whereas	a	table	containing	orders	might	use	the	order	ID.	An	employee	list	table	might
use	an	employee	ID	or	the	employee	Social	Security	Number	column.

Primary	Key

A	column	(or	set	of	columns)	whose	values	uniquely	identify	every	row	in	a	table.

This	column	(or	set	of	columns)	that	uniquely	identifies	each	row	in	a	table	is	called	a
primary	key.	You	use	the	primary	key	to	refer	to	a	specific	row.	Without	a	primary	key,
updating	or	deleting	specific	rows	in	a	table	becomes	extremely	difficult	because	no
guaranteed	safe	way	exists	to	refer	to	just	the	rows	to	be	affected.

Tip:	Always	Define	Primary	Keys

Although	primary	keys	are	not	actually	required,	most	database	designers	ensure
that	every	table	they	create	has	a	primary	key	so	future	data	manipulation	is
possible	and	manageable.

You	can	establish	any	column	in	a	table	as	the	primary	key,	as	long	as	it	meets	the
following	conditions:

	No	two	rows	can	have	the	same	primary	key	value.

	Every	row	must	have	a	primary	key	value	(primary	key	columns	may	not	allow
NULL	values).

Tip:	Primary	Key	Rules

The	rules	listed	here	are	enforced	by	Oracle	itself.

You	usually	define	primary	keys	on	a	single	column	in	a	table.	But	this	is	not	required,
and	you	may	use	multiple	columns	together	as	a	primary	key.	When	you	use	multiple
columns,	the	rules	previously	listed	must	apply	to	all	columns	that	make	up	the	primary
key,	and	the	values	of	all	columns	together	must	be	unique	(individual	columns	need	not
have	unique	values).

Tip:	Primary	Key	Best	Practices

In	addition	to	the	rules	that	Oracle	enforces,	several	universally	accepted	best
practices	that	you	should	adhere	to	include	the	following:

	Don’t	update	values	in	primary	key	columns.

	Don’t	reuse	values	in	primary	key	columns.

	Don’t	use	values	that	might	change	in	primary	key	columns.	(For	example,	when
you	use	a	name	as	a	primary	key	to	identify	a	supplier,	you	would	have	to	change
the	primary	key	when	the	supplier	merges	and	changes	its	name.)

Another	important	type	of	key	is	the	foreign	key,	but	I’ll	get	to	that	later	on	in	Lesson	15,
“Joining	Tables.”

What	Is	SQL?
SQL	(pronounced	as	the	letters	S-Q-L	or	as	sequel)	is	an	abbreviation	for	Structured	Query
Language.	SQL	is	a	language	designed	specifically	for	communicating	with	databases.

Unlike	other	languages	(spoken	languages	such	as	English,	or	programming	languages
such	as	C,	Java,	or	Python),	SQL	is	made	up	of	very	few	words.	This	is	deliberate.	SQL	is
designed	to	do	one	thing	and	do	it	well—provide	you	with	a	simple	and	efficient	way	to
read	and	write	data	from	a	database.

What	are	the	advantages	of	SQL?

	SQL	is	not	a	proprietary	language	used	by	specific	database	vendors.	Almost	every
major	DBMS	supports	SQL,	so	learning	this	one	language	enables	you	to	interact
with	just	about	every	database	you’ll	run	into.

	SQL	is	easy	to	learn.	The	statements	are	all	made	up	of	descriptive	English	words,
and	there	aren’t	that	many	of	them.

	Despite	its	apparent	simplicity,	SQL	is	a	very	powerful	language,	and	by	cleverly
using	its	language	elements,	you	can	perform	complex	and	sophisticated	database
operations.

Note:	DBMS-Specific	SQL

Although	SQL	is	not	a	proprietary	language	and	a	standards	committee	exists	that
tries	to	define	SQL	syntax	that	all	DBMSs	can	use,	the	reality	is	that	no	two
DBMSs	implement	SQL	identically.	The	SQL	taught	in	this	book	is	specific	to
Oracle,	and	although	much	of	the	language	taught	is	usable	with	other	DBMSs,	do
not	assume	complete	SQL	syntax	portability.

Try	It	Yourself
All	the	lessons	in	this	book	use	working	examples,	showing	you	the	SQL	syntax,	what	it
does,	and	explaining	why	it	does	it.	I	strongly	suggest	that	you	try	each	and	every	example
for	yourself	to	learn	Oracle	firsthand.

Note:	You	Need	Oracle

Obviously,	you’ll	need	access	to	an	Oracle	DBMS	to	follow	along.	In	Lesson	2,
“Getting	Started	with	Oracle	and	PL/SQL,”	I	explain	exactly	what	you	need,	and
present	several	installation	and	configuration	options	that	you	can	use.

Summary
In	this	first	lesson,	you	learned	what	SQL	is	and	why	it	is	useful.	Because	SQL	is	used	to
interact	with	databases,	you	also	reviewed	some	basic	database	terminology.

Lesson	2.	Getting	Started	with	Oracle	and	PL/SQL

In	this	lesson,	you’ll	learn	what	Oracle	and	PL/SQL	are,	and	what	tools	you	can	use	to
work	with	them.

What	Is	Oracle?
In	the	previous	lesson,	you	learned	about	databases	and	SQL.	As	explained,	it	is	the
database	software	(DBMS	or	Database	Management	System)	that	actually	does	all	the
work	of	storing,	retrieving,	managing,	and	manipulating	data.	Oracle	DBMS	(or	just
“Oracle”)	is	a	DBMS;	that	is,	it	is	database	software.

Oracle	has	been	around	for	a	long	time.	The	first	version	of	the	DBMS	was	released	in	the
1970s,	and	it	has	been	updated	and	improved	regularly	ever	since.	The	current	(as	of	the
time	this	book	goes	to	print)	version	of	Oracle	is	12c,	which	was	released	in	2013	(the	“c”
in	12c	stands	for	“cloud”).	Oracle	is	one	of	the	most	deployed	and	used	DBMSs,
especially	within	corporate	systems	and	infrastructures.

Client-Server	Software
DBMSs	fall	into	two	categories:	shared	file–based	and	client-server.	The	former	(which
include	products	such	as	Microsoft	Access	and	File	Maker)	are	designed	for	desktop	use,
and	are	generally	not	intended	for	use	on	higher-end	or	more	critical	applications
(including	websites	and	web-based	applications).

Databases	such	as	Oracle,	MySQL	(and	its	offshoot	MariaDB),	and	Microsoft	SQL	Server
are	client-server–based	databases.	Client-server	applications	are	split	into	two	distinct
parts.	The	server	portion	is	a	piece	of	software	that	is	responsible	for	all	data	access	and
manipulation.	This	software	runs	on	a	computer	called	the	database	server.

Only	the	server	software	interacts	with	the	data	files.	All	requests	for	data,	data	additions
and	deletions,	and	data	updates	are	funneled	through	the	server	software.	These	requests
or	changes	come	from	computers	running	client	software.	The	client	is	the	piece	of
software	with	which	the	user	interacts.	If	you	request	an	alphabetical	list	of	products,	for
example,	the	client	software	submits	that	request	over	the	network	to	the	server	software.
The	server	software	processes	the	request;	filters,	discards,	and	sorts	data	as	necessary;
and	sends	the	results	back	to	your	client	software.

Note:	How	Many	Computers	Do	You	Need?

The	client	and	server	software	may	be	installed	on	two	computers	or	on	one
computer.	Regardless,	the	client	software	communicates	with	the	server	software
for	all	database	interaction,	be	it	on	the	same	machine	or	not.

All	this	action	occurs	transparently	to	you,	the	user.	The	fact	that	data	is	stored	elsewhere
or	that	a	database	server	is	even	performing	all	this	processing	for	you	is	hidden.	You
never	need	to	access	the	data	files	directly.	In	fact,	most	networks	are	set	up	so	that	users
have	no	access	to	the	data,	or	even	the	drives	on	which	it	is	stored.

Why	is	this	significant?	Because	to	work	with	Oracle,	you	need	access	to	both	a	computer
running	the	Oracle	server	software	and	client	software	with	which	to	issue	commands	to
Oracle:

	The	server	software	is	the	Oracle	DBMS.	You	can	run	a	locally	installed	copy,	or
you	can	connect	to	a	copy	running	a	remote	server	to	which	you	have	access.

	The	client	can	be	Oracle-provided	tools,	scripting	languages	(such	as	Python	and
Perl),	web	application	development	languages	(such	as	PHP,	JSP,	and	ASP),
programming	languages	(such	as	C,	C++,	and	Java),	and	more.

Note:	Clients?	Servers?	Why	Should	I	Care?

The	reason	I	point	this	out	is	that	client-server	software,	by	design,	is	a	little	more
complex	to	get	started	with.	When	you	use	a	word	processor	or	spreadsheet,	you
open	the	application	on	your	computer	and	it	works	with	local	data.	Client-server
database	software	doesn’t	work	that	way.	Production	servers	usually	run	in	data
centers	that	users	never	access	directly,	so	the	computers	running	the	server
software	seldom	have	client	tools	on	them.	Similarly,	when	working	with	these
databases,	users	typically	use	local	tools	connected	to	remote	production	servers,	so
they	would	have	client	tools	installed	locally	but	not	a	server.	As	such,	before	those
client	tools	can	be	used,	they	must	be	configured	so	that	they	can	access	the	remote
server.	This	is	true	even	if	both	the	server	and	client	tools	are	indeed	on	the	same
machine,	as	you	will	see	shortly.

PL/SQL
As	I	noted	in	Lesson	1,	“Understanding	SQL,”	all	SQL	implementations	are	not	created
equal.	This	is	unfortunate;	it	would	be	ideal	if	you	could	learn	and	write	SQL	for	one
DBMS	and	have	it	run	as-is	on	any	other.	In	early	SQL	days,	this	was	actually	more	likely,
but	over	the	years	DBMS	vendors	have	needed	to	add	features	and	functionality	beyond
that	supported	by	standard	SQL,	and	so	they	created	their	own	variants	of	the	SQL
language.

PL/SQL	stands	for	Procedural	Language	/	Structured	Query	Language,	and	PL/SQL	is
Oracle’s	implementation	of	SQL	(and	has	been	since	Oracle	version	7).	The	SQL	you	will
learn	in	this	book	is	PL/SQL,	which	means	that	it	is	intended	for	use	with	Oracle	only.
Most	of	what	you’ll	learn,	especially	in	the	earlier	lessons,	is	quite	applicable	to	other
DBMSs,	but	this	definitely	is	not	the	case	later	in	the	book.

Client	Tools
As	already	explained,	Oracle	is	a	client-server	database,	and	to	use	it,	you’ll	need	client
software	(the	program	you	use	to	actually	run	SQL	commands).	Lots	of	options	exist	in
regard	to	client	software,	but	you	should	be	aware	of	these	two	Oracle	options
specifically:

	All	Oracle	server	installations	include	a	command-line	tool	called	SQL*Plus.	This
basic	client	simply	displays	a	SQL>	prompt	in	a	text	window,	allowing	you	to	enter

commands	and	instructions	to	the	Oracle	server.

	Oracle	also	provides	a	free	graphical	client	called	Oracle	SQL	Developer	(it	might
show	up	named	just	“SQL	Developer”	when	you	install	it	on	your	computer).	Oracle
SQL	Developer	lets	you	interactively	connect	to	and	use	your	Oracle	server	and	is	a
much	better	option	for	daily	Oracle	use,	especially	for	beginners.

Although	you	are	free	to	use	any	client	tool	you	want	(the	PL/SQL	you	use	will	always	be
the	same	regardless	of	client	tool),	I	highly	recommend	using	Oracle	SQL	Developer	as
your	first	tool,	and	the	instructions	in	this	book	assume	that	you	are	doing	just	that.

Getting	Set	Up
As	you	now	know,	to	start	using	Oracle,	and	to	follow	along	with	the	lessons	in	this	book,
you	need	access	to	an	Oracle	DBMS	(or	“Oracle	Server”)	and	client	applications	(software
used	to	access	the	server).

What	Software	Do	You	Need?
You	do	not	need	your	own	installed	Oracle	server,	but	you	do	need	access	to	one.	You
basically	have	two	options:

	Access	to	an	existing	Oracle	DBMS,	perhaps	one	by	your	hosting	company	or	place
of	business	or	school.	To	use	this	server,	you	will	be	granted	a	server	account	(a
login	name	and	password).

	You	may	download	and	install	your	own	copy	of	Oracle	for	installation	on	your	own
computer.	Oracle	runs	on	major	platforms	including	Windows	and	Linux,	but	no
longer	on	Mac	OS.	However,	that	does	not	mean	that	Mac	users	can’t	learn	and	use
Oracle	PL/SQL.

Note:	Important	Note	for	Mac	Users

Oracle	has	stopped	officially	supporting	Mac	OS	as	a	server	platform.	If	you	are	a
Mac	OS	user,	you	can	install	the	client	software	and	use	it	to	connect	to	a	remote
Oracle	database	server,	but	you	won’t	be	able	to	install	the	Oracle	DBMS	itself	on
your	Mac	(well,	at	least	not	easily	or	using	any	documented	options).	As	such,	Mac
users	must	opt	for	the	first	of	the	two	options	noted	previously.

Tip:	If	You	Can,	Install	a	Local	Server

For	complete	control,	including	access	to	commands	and	features	that	you	will
probably	not	be	granted	by	using	someone	else’s	Oracle	DBMS,	install	your	own
local	server.	Even	if	you	don’t	end	up	using	your	local	server	as	your	final
production	DBMS,	you’ll	still	benefit	from	having	complete	and	unfettered	access
to	all	the	server	has	to	offer.

If	you	will	be	using	an	existing	hosted	Oracle	server,	then	you	don’t	need	to	worry	about
what	version	it	is,	because	just	about	everything	you’ll	learn	in	this	book	works	with	all
versions	(and	if	version-specific	issues	exist	that	you	need	to	be	aware	of,	I	point	them	out

along	the	way).

If	you	want	to	install	your	own	server,	then	you	have	two	choices:

	You	can	install	a	complete	Oracle	server	installation.	The	current	version	(as	of
when	this	book	is	going	to	print)	is	Oracle	12c,	and	you	can	install	that	or	any	prior
version.	Oracle	server	is	commercial	software,	and	so	although	you	can	download
and	install	it	without	buying	a	license,	you	need	to	purchase	a	license	for	ongoing
use.	When	you	install	Oracle	server,	it	presents	you	with	lots	(and	I	do	mean	lots)	of
configuration	options	that	you	can	use	to	control	exactly	what	gets	installed	and	how
it	is	configured.

	You	can	also	download	and	install	Oracle	Database	Express	Edition	(also	called
Oracle	Database	XE),	a	free	version	of	Oracle	server	that	has	some	important
limitations,	none	of	which	will	impact	the	lessons	in	this	book.	Installing	Oracle
Database	Express	Edition	is	quick	and	painless,	and	the	PL/SQL	you’ll	learn	and	use
applies	to	all	versions	of	Oracle	server.

Tip:	Oracle	Database	Express	Edition	Is	Recommended

As	should	be	apparent	from	the	descriptions	I	just	gave	you,	my	recommendation	is
that	if	you	are	new	to	Oracle	and	want	to	focus	on	PL/SQL	(as	opposed	to	focusing
on	managing	and	administering	an	Oracle	server),	use	the	Express	Edition.
Installing	and	configuring	a	full-blown	Oracle	server	can	be	frustrating	if	you’ve
never	done	it	before,	and	if	your	goal	is	to	learn	PL/SQL,	that	effort	is	unnecessary.
The	current	(as	of	when	this	book	is	going	to	print)	version	of	Oracle	XE	is	11g
Release	2.	However,	if	you	truly	do	want	to	delve	into	the	world	of	Oracle	database
administration,	then	by	all	means	install	the	full	Oracle	DBMS.

Obtaining	the	Software
To	learn	more	about	Oracle,	go	to	http://oracle.com/.

To	download	a	copy	of	the	server,	go	to	the	Oracle	website	and	click	on	the	Download
link.	Lots	of	options	present	themselves,	but	the	ones	that	you	are	interested	in	are	the
following:

	In	the	Database	section,	select	Oracle	Database	for	a	full	Oracle	server	installation,
or	the	Express	Edition.

	In	the	Developer	Tools	section,	select	SQL	Developer	for	the	client	tool.

Oracle	does	require	the	creation	of	an	Oracle	account	to	download	any	software,	so	if	you
don’t	have	an	existing	account,	the	site	prompts	you	to	create	one.

http://oracle.com/

Note:	Where	Is	Oracle	SQL	Developer?

Unlike	SQL*Plus	(which	is	always	installed	with	Oracle	server	installations),	you
might	need	to	install	Oracle	SQL	Developer	separately,	depending	on	the	version	of
Oracle	server	you	are	using.	As	of	Oracle	12c,	Oracle	SQL	Developer	is	indeed
installed	as	part	of	the	server	installation.	However,	if	you	are	using	an	older
version	of	Oracle,	or	Oracle	Express,	you	must	download	and	install	Oracle	SQL
Developer	yourself.

Installing	the	Software
If	you	are	installing	a	local	Oracle	server,	do	so	before	installing	any	other	clients	or
utilities.

Exact	installation	steps	for	a	full	Oracle	server	are	beyond	the	scope	of	this	book,	and	if
you	need	help	with	an	installation,	you	should	refer	to	documentation	on	the	Oracle
website.

Installation	of	Oracle	Express	Edition	involves	the	following:

	Depending	on	your	operating	system,	you	might	need	to	expand	the	download	file	to
uncompress	it.

	Run	the	setup	program.

	Accept	the	license	agreement.

	You	can	leave	all	questions	and	prompts	with	their	default	values.

	The	programs	asks	you	to	provide	a	database	password;	enter	one	and	remember
what	it	is!

	Then	just	let	the	installer	do	its	thing.

Regardless	of	whether	or	not	you	install	a	local	server,	you’ll	want	a	local	copy	of	Oracle
SQL	Developer.	If	one	was	not	installed	(if	and)	when	you	installed	the	Oracle	server,	do
the	following:

	Depending	on	your	operating	system,	you	might	need	to	expand	the	download	file	to
uncompress	it.

	Run	the	setup	program.

	Accept	the	license	agreement.

	You	can	leave	all	questions	and	prompts	with	their	default	values.

	Then	just	let	the	installer	do	its	thing.

As	long	as	the	software	installs	correctly,	you’re	ready	to	move	on	to	Lesson	3,	“Working
with	Oracle.”

Summary
You	now	know	what	Oracle	is,	what	PL/SQL	is,	and	what	software	you	need	to	proceed.
You	should	also	have	access	to	an	Oracle	server	(local	or	remote),	and	have	client
software	installed	and	ready	to	use.	In	Lesson	3,	I’ll	show	you	how	to	log	in	and	log	out	of
the	server,	and	how	to	execute	commands.	The	lessons	in	this	book	all	use	real	SQL
statements	and	real	data,	and	so	I	will	also	walk	you	through	creating	and	populating	the
example	database	tables.

Lesson	3.	Working	with	Oracle

In	this	lesson,	you	learn	how	to	connect	and	log	in	to	Oracle,	how	to	issue	PL/SQL	SQL
statements,	and	how	to	create	and	populate	the	example	tables	that	we’ll	be	using
throughout	this	book.

Creating	a	Working	Environment
Now	that	you	have	access	to	Oracle	and	client	software	to	use	with	it,	the	next	step	is	to
create	a	working	environment.	Database	servers,	like	your	Oracle	server,	are	usually	used
by	lots	of	different	users	and	applications.	Imagine	what	would	happen	if	a	user	created	a
table	called	customers	to	store	customer	data,	and	another	user	tried	to	create	a	table	of
the	same	name.	Users	could	overwrite	each	other’s	data;	they	could	access	incorrect
information—you	get	the	idea.	In	multi-user	environments,	and	DBMSs	are	designed	to
be	exactly	that,	this	type	of	contention	is	a	real	concern.	And	so	when	working	in	client-
server	databases,	it’s	important	for	each	user	to	have	a	private	safe	workspace.	Back	to	our
example,	by	having	this	workspace,	one	user’s	customers	table	doesn’t	interfere	with
another	user’s	table	of	the	same	name.

Many	different	ways	exist	to	create	safe,	isolated	work	environments.	If	you	are	using	an
existing	Oracle	server,	perhaps	a	corporate	database,	then	the	database	administrator	will
likely	give	you	your	own	login	and	workspace,	and	when	you	log	in	to	Oracle,	you’ll	be	in
the	right	safe	workspace	automatically.	If	this	is	the	case,	you	can	jump	ahead	to	the	later
section,	“Making	the	Connection.”

If,	however,	you	are	using	your	own	Oracle	server,	then	you’ll	need	to	do	this	for	yourself.

Caution:	Not	Required,	But	Highly	Recommended

When	Oracle	is	first	installed,	it	creates	one	default	instance.	This	is	where	Oracle
itself	stores	system	information,	including	user	login	details	and	more.	The	truth	is
that	you	can	use	this	default	system	instance,	too;	you	could	create	the	example
tables	within	it,	populate	them	with	the	example	data,	and	be	able	to	proceed	with
the	lessons	in	this	book.	However,	using	the	default	system	instance	for	your	own
work	is	not	recommended.	In	fact,	doing	so	is	generally	considered	a	bad	idea.
Why?	Well,	as	I	just	explained,	this	system	instance	is	used	to	store	information	that
Oracle	DBMS	itself	needs,	critical	information	without	which	the	DBMS	might	not
run	properly	(or	maybe	not	run	at	all).	As	you	will	see	in	later	lessons,	editing	data,
even	deleting	entire	tables,	is	all	too	easy	to	do,	and	so	working	and	experimenting
in	the	default	system	instance	is	asking	for	trouble.	That’s	why	I	want	you	to	create
your	own	safe	workspace,	one	other	than	the	default	system	instance.

Creating	a	Dedicated	Oracle	Instance
The	best	way	to	create	a	safe	work	environment	is	to	create	a	dedicated	instance	of	Oracle
for	yourself.	You	can	think	of	it	as	Oracle	allowing	multiple	copies	of	itself	to	be	run	on	a
single	server,	each	one	isolated	from	another	copy.	Each	server	is	referred	to	as	an
instance,	and	each	instance	has	a	unique	name.

Note:	Are	You	Using	Oracle	Express	Edition?

The	creation	of	multiple	instances	is	supported	by	full	Oracle	installations	only,	but
not	by	Oracle	Express	Edition.	If	you	are	using	Express	Edition,	jump	ahead	to
“Creating	a	Custom	Workspace.”

To	create	a	dedicated	Oracle	instance	for	use	with	this	book,	do	the	following:

1.	Run	the	Oracle	installed	application	named	Database	Configur-ation	Assistant;	this
is	used	to	create	(as	well	as	update	and	delete)	database	instances.

2.	When	the	application	launches,	select	the	first	option,	Create	a	Database,	and	then
click	the	Next	button.

3.	You	may	be	asked	to	select	a	Database	Template.	If	so,	select	General	Purpose	and
then	click	the	Next	button.

4.	Every	database	must	be	uniquely	named.	In	production	environments,	database
names	are	carefully	managed	and	are	usually	in	the	form
organization.domain.database.	However,	to	keep	things	simple,	enter
crashcourse	as	the	Global	Database	Name	and	as	the	SID	(the	System
Identifier),	and	then	click	the	Next	button.

5.	If	you	are	asked	about	Enterprise	Manager,	leave	the	default	settings,	and	click	the
Next	button.

6.	You’ll	then	be	asked	for	passwords	for	important	management	accounts.	You	can
enter	a	unique	password	for	each	account,	or,	as	this	is	a	non-mission-critical
database	instance,	check	the	Use	the	Same	Administrative	Password	option	and
provide	a	password.	Remember	this	password;	without	it,	you	cannot	access	your
new	database	instance.	Click	Next.

7.	When	asked	about	database	storage	locations	and	templates,	leave	the	default
settings,	and	click	the	Next	button.

8.	When	asked	about	recovery	options,	once	again,	leave	the	default	settings,	and	click
the	Next	button.

9.	Oracle	can	install	sample	tables	and	data	in	your	new	instance.	We	do	not	need	this
because	we	are	going	to	use	our	own	example	data.	So,	when	asked	about	Sample
Schemas,	make	sure	the	box	is	not	checked,	and	then	click	the	Next	button.

10.	When	asked	about	memory,	sizing,	character	sets,	and	connections,	leave	the
default	settings,	and	click	the	Next	button.

11.	Eventually	you’ll	be	asked	whether	you	want	to	create	a	database,	create	a	database

template,	or	generate	database	creation	scripts.	The	only	option	you	want	checked	is
Create	Database.

12.	Click	the	Next	button,	and	when	prompted	for	confirmation,	click	the	OK	button.

The	Oracle	Database	Configuration	Assistant	now	creates	your	new	crashcourse
database	instance.

Note:	If	You	See	Warning	Messages

You	might	see	warnings	pertaining	to	specific	settings.	As	long	as	the	final	screen
says	that	the	database	instance	creation	completes	successfully,	you’ll	be	good	to
go.

After	your	database	instance	has	been	created,	you	can	jump	to	the	later	section,	“Making
the	Connection.”

Creating	a	Custom	Workspace
If	you	are	using	Oracle	Express	Edition,	you	won’t	be	able	to	create	your	own	database
instance.	So	instead,	create	a	user-specific	workspace	within	the	existing	database
instance.

Here’s	what	you	need	to	do:

1.	Oracle	Express	Edition	is	managed	via	an	embedded	web	server.	The	Oracle
Express	Edition	installer	created	a	link	named	Get	Started	with	Oracle	Express
Edition.	Click	the	link,	and	a	web	browser	opens	displaying	a	web	page	with	options
to	manage	Storage,	Sessions,	and	more.	If	you	are	prompted	to	log	in,	use	the	login
name	SYSTEM	and	the	password	you	provided	at	installation	time.

2.	Click	on	the	red	Application	Express	button.	You’ll	be	presented	with	a	web	page
that	can	be	used	to	create	an	application	workspace.

3.	Make	sure	Create	New	is	selected.

4.	For	Database	Username,	type	crashcourse.

5.	For	Application	Express	Username,	type	crashcourse	(or	use	your	own	name).

6.	Enter	a	password	of	your	choice	and	confirm	it.

7.	Click	the	red	Create	Workspace	button.

8.	You	should	see	a	prompt	telling	you	that	the	workspace	was	successfully	created,
and	allowing	you	to	log	in.	Click	on	the	login	option.	If	you	don’t	see	the	prompt,
just	click	on	the	Application	Express	button	again,	and	this	time	click	on	the	Already
have	an	account?	Login	Here	button.

9.	When	prompted	for	Workspace,	enter	crashcourse;	for	Username,	enter	the
username	from	step	5,	and	enter	the	Password	you	selected.

10.	Click	the	Login	button.

You	should	see	a	new	screen	with	options	for	Application	Builder,	SQL	Workshop,	and

more.	If	this	is	the	case,	you’re	ready	to	proceed.

Tip:	You	Can	Use	Application	Express

Application	Express	is	a	web-based	interface	to	Oracle	Express	Edition.	Among	its
features	is	a	tool	named	SQL	Workshop	that	can	be	used	to	enter	SQL	statements,
build	scripts,	and	more.	As	such,	Application	Express	is	another	Oracle	client	that
you	can	use.

After	your	workspace	has	been	created,	you	can	jump	to	the	following	“Making	the
Connection”	section.

Making	the	Connection
Oracle,	like	all	client-server	DBMSs,	requires	that	you	login	to	the	DBMS	before	being
able	to	issue	commands.	Login	names	might	not	be	the	same	as	your	network	login	name
(assuming	that	you	are	using	a	network);	Oracle	maintains	its	own	list	of	users	internally,
and	associates	rights	with	each.	For	a	database	client,	like	Oracle	SQL	Developer,	to
connect	to	the	Oracle	server	(even	a	local	Oracle	server),	you	must	tell	it	where	to	find	the
server,	and	how	to	log	in.

To	connect	Oracle	SQL	Developer	to	the	Oracle	server,	follow	these	steps:

1.	Run	Oracle	SQL	Developer.

2.	When	the	application	loads,	you	see	a	screen	split	into	three	sections,	with	menus
and	an	icon	toolbar	on	top.	The	top-left	window	is	the	Connections	window,	and	it
lists	any	defined	Oracle	servers	(of	which	there	will	currently	be	none).

3.	At	the	top	of	the	Connections	window,	click	on	the	green	+	button	to	add	a	new
database	connection.

4.	For	Connection	Name,	enter	crashcourse.	(The	name	does	not	have	to	match
the	database,	workspace,	login,	or	anything	else;	this	is	just	the	name	that	Oracle
SQL	Developer	uses	to	identify	each	defined	connection.)

5.	For	Username	and	Password,	enter	what	you	specified	when	you	created	the
database	instance	or	workspace	previously.

6.	Check	the	Save	Password	checkbox	so	that	you	don’t	have	to	keep	entering	the
password.

7.	For	Hostname,	enter	localhost	if	you	are	using	your	own	local	Oracle	server.	If
you	are	using	a	remote	or	hosted	server,	enter	the	hostname	given	to	you	by	that
server’s	administrator.

8.	SID	is	the	database	instance	id.	If	you	are	using	a	local	Oracle	server	and	followed
the	preceding	steps,	then	this	is	crashcourse	if	you	have	a	dedicated	Oracle
instance,	or	xe	if	you	are	using	your	own	workspace	with	the	single	Oracle	Express
Edition	instance.

9.	Click	the	Test	button.

10.	At	the	bottom	left	of	the	dialog	box,	you	should	see	Status	:	Success.	If	that
is	displayed,	click	the	Save	button	to	save	this	new	connection.	If	an	error	message
is	displayed,	check	the	form	fields	and	correct	the	error	before	proceeding.

After	you	save	the	new	crashcourse	connection,	you	should	see	it	listed	in	the
Connections	window	on	the	top	right.	You	can	now	close	the	dialog	box.

Note:	Using	Other	Clients

If	you	are	using	a	client	other	than	Oracle	SQL	Developer,	you	still	need	to	provide
this	information	to	connect	to	Oracle.	The	exact	steps	might	differ,	but	the	same
information	is	required.

A	Quick	Introduction	to	Oracle	SQL	Developer
You’ll	be	using	Oracle	SQL	Developer	extensively	as	you	learn	PL/SQL,	so	it’s	worth
taking	a	moment	to	familiarize	yourself	with	this	tool:

Note:	Just	the	Basics

Oracle	SQL	Developer	is	a	powerful	database	client,	and	we’ll	just	use	basic	query
execution	capabilities	in	this	book.	In	the	future,	as	you	use	more	of	Oracle’s
capabilities,	it	would	be	to	your	advantage	to	learn	more	about	this	tool.

	Click	the	+	next	to	your	new	crashcourse	connection	to	expand	it.	This	shows
you	all	tables,	views,	and	much	more.	You	can	further	expand	into	each	menu
option,	and	can	right-click	on	each	to	edit	and	more.

	The	most	important	part	of	the	screen	is	the	large	area	on	the	right.	This	is	where
you	enter	your	PL/SQL	statements	and	display	results	(if	there	are	any).

	When	you	open	a	connection,	a	worksheet	should	automatically	open	for	you	to	start
entering	SQL.	If	it	does	not,	or	if	you	want	multiple	worksheets	open,	you	can	click
on	the	SQL	Worksheet	button	in	the	application	toolbar	(it’s	the	one	with	a	green
icon	and	the	word	SQL	in	black	on	white	in	front	of	it).	Click	OK	and	you’ll	have
another	worksheet	to	use.

	Let’s	give	it	a	try.	Enter	the	following	PL/SQL	in	the	Worksheet	screen.	(Don’t
worry	if	the	code	doesn’t	make	sense;	it	will	within	the	next	few	lessons.)

Click	here	to	view	code	image
SELECT	TO_CHAR(SYSDATE,	‘DD-MON-YYYY	HH:MI:SS’)	FROM	DUAL;

Click	the	Run	Script	button	(it’s	the	one	with	a	green	arrow	on	top	of	a	document;	it
should	be	the	second	from	the	left	in	the	toolbar	above	the	Worksheet	window)	to
execute	the	SQL	statement.	You	should	see	the	system	date	and	time	displayed	in	a
Query	Result	screen	below.

	Lastly,	when	the	screens	get	cluttered,	click	on	the	Clear	button	(the	one	with	the
picture	of	a	pencil	eraser)	above	either	screen	to	clear	the	contents.

Execute

SQL	developers	often	use	the	terms	execute	and	run	interchangeably;	both	mean
actually	running	the	SQL.

Note:	Run	Statement	vs.	Run	Script

I	just	had	you	click	the	Run	Script	button	to	execute	the	SQL	statements	in	the
Worksheet	window.	Run	Script	does	exactly	that—it	runs	the	entire	script,	every
line	of	code	in	the	worksheet.	At	times,	however,	you	might	want	to	run	just	part	of
a	script,	perhaps	a	single	statement.	To	do	this,	you	can	use	the	Run	Statement
button	instead	(it	has	a	green	right-facing	arrow);	it	runs	whatever	is	currently
selected	in	the	Worksheet	screen,	rather	than	the	entire	script.

Tip:	Using	Multiple	Worksheets

You	now	know	how	to	open	multiple	Worksheet	screens	at	once.	You’ll	find	doing
so	useful	when	you	are	working	on	and	testing	multiple	SQL	statements	at	the	same
time.

With	that,	you’re	ready	to	run	some	important	SQL	scripts—the	ones	used	to	create	and
populate	the	example	tables	that	you’ll	be	using	in	future	lessons.

Creating	and	Populating	the	Example	Tables
The	tables	used	throughout	this	book	are	part	of	an	order	entry	system	used	by	an
imaginary	distributor	of	paraphernalia	that	might	be	needed	by	your	favorite	cartoon
characters	(yes,	cartoon	characters;	no	one	said	that	learning	Oracle	had	to	be	boring).	The
tables	are	used	to	perform	several	tasks,	including:

	Manage	vendors

	Manage	product	catalogs

	Manage	customer	lists

	Enter	customer	orders

Making	this	all	work	requires	six	tables	that	are	closely	interconnected	as	part	of	a
relational	database	design.	Here	are	the	tables	we’ll	be	using:

	The	customers	table	contains	your	customers.

	The	orders	table	contains	one	row	per	order	placed.

	The	orderitems	table	contains	the	details	for	each	item	in	an	order	(the	orders	in
the	orders	table).

	The	products	table	lists	all	available	products	from	all	vendors.

	The	productnotes	table	contains	notes	pertaining	to	products.

	The	vendors	table	contains	product	vendors.

These	six	tables	contain	multiple	columns,	and	are	all	connected	using	foreign	keys.	A
detailed	description	of	each	of	the	tables	appears	in	Appendix	A,	“The	Example	Tables.”

Note:	Simplified	Examples

The	tables	used	here	are	by	no	means	complete.	A	real-world	order	entry	system
would	have	to	keep	track	of	lots	of	other	data	that	has	not	been	included	here	(for
example,	payment	and	accounting	information,	shipment	tracking,	and	more).
However,	these	tables	do	demonstrate	the	kinds	of	data	organization	and
relationships	you	encounter	in	most	real	installations.	You	can	apply	these
techniques	and	technologies	to	your	own	databases.

Obtaining	the	Same	Table	Scripts
To	follow	along	with	the	examples,	you	need	a	set	of	populated	tables.	Everything	you
need	to	get	up	and	running	can	be	found	on	this	book’s	web	page	at
http://forta.com/books/0672328666.

The	web	page	contains	a	ZIP	file	that	you	should	download.	Inside	it	are	two	SQL	script
files:

	create.sql	contains	the	PL/SQL	statements	to	create	the	six	database	tables
(including	defining	all	primary	keys	and	foreign	key	constraints).

	populate.sql	contains	the	PL/SQL	INSERT	statements	used	to	populate	these
tables	with	sample	data.

Note:	For	Oracle	Only

The	SQL	statements	in	the	downloadable	.sql	files	are	very	DBMS	specific,	and
are	designed	to	be	used	only	with	Oracle.

After	you	have	downloaded	the	scripts,	you	can	use	them	to	create	and	populate	the	tables
needed	to	follow	along	with	the	lessons	in	this	book.

Note:	Create,	Then	Populate

You	must	run	the	table	creation	scripts	before	the	table	population	scripts.	Be	sure
to	check	for	any	error	messages	returned	by	these	scripts.	If	the	creation	scripts	fail,
you	need	to	remedy	whatever	problem	might	exist	before	continuing	with	table
population.

Create	the	Tables
Database	tables	are	created	using	the	SQL	statement	CREATE	TABLE,	but	rather	than
have	you	type	that	all	out,	you	can	use	the	create.sql	file	that	you	downloaded.

1.	Make	sure	Oracle	SQL	Developer	is	open	and	the	crashcourse	connection	is

http://forta.com/books/0672328666

open.

2.	Use	the	Open	button	(it	has	a	picture	of	a	yellow	folder)	or	choose	File,	Open	to
open	create.sql.	The	contents	of	create.sql	appear	in	a	new	worksheet.

3.	Because	you	could	be	working	with	multiple	database	connections,	you	need	to	tell
Oracle	SQL	Developer	to	use	the	crashcourse	connection.	From	the	drop-down
box	at	the	top	right	above	the	Worksheet	screen,	select	crashcourse.

4.	Click	the	Run	Script	button	(once	again,	it’s	the	one	above	the	Worksheet	screen;	a
green	arrow	over	a	document).	You	should	then	see	the	following	output:

Output
table	CUSTOMERS	created.
table	ORDERITEMS	created.
table	ORDERS	created.
table	PRODUCTS	created.
table	VENDORS	created.
table	PRODUCTNOTES	created.
table	CUSTOMERS	altered.
table	ORDERITEMS	altered.
table	ORDERS	altered.
table	PRODUCTS	altered.
table	VENDORS	altered.
table	PRODUCTNOTES	altered.
table	ORDERITEMS	altered.
table	ORDERITEMS	altered.
table	ORDERS	altered.
table	PRODUCTS	altered.
table	PRODUCTNOTES	altered.

The	preceding	tells	you	that	six	tables	were	created,	and	that	they	were	then	also	altered
(we	do	this	to	add	primary	and	foreign	keys).	Now	that	you	have	tables,	let’s	populate
them.

Populate	the	Tables
Data	is	inserted	into	a	table	using	the	INSERT	statement.	Once	again,	rather	than	typing
hundreds	of	lines	of	SQL,	we’ll	use	the	downloaded	file	instead.

1.	Use	the	Open	button	(or	choose	File,	Open)	to	open	populate.sql.	The	contents
of	populate.sql	appear	in	a	new	worksheet.

2.	Make	sure	that	crashcourse	is	selected	in	the	drop-down	box	at	the	top	right
above	the	Worksheet	screen.

3.	Click	the	Run	Script	button	(once	again,	it’s	the	one	above	the	Worksheet	screen;	a
green	arrow	over	a	document).	You	should	then	see	the	following	message	appear	55
times	(once	for	each	row	inserted):

Output
1	rows	inserted.

You	now	have	the	tables	and	data	you	need	to	proceed.

One	More	Look	at	Oracle	SQL	Developer
Before	finishing	this	lesson,	I	want	to	point	out	one	more	invaluable	feature	of	Oracle
SQL	Developer.	Now	that	you	have	created	and	populated	the	example	tables,	try	the
following:

1.	Locate	the	crashcourse	database	connection	in	the	Connections	screen,	and
click	+	to	expand	it.

2.	The	first	item	displayed	is	b;	click	+	to	expand	that.

3.	Scroll	through	the	list	of	tables	to	find	one	that	we	just	created.	The	first	one	you’ll
see	is	customers,	but	any	of	our	tables	will	do.

4.	Click	the	+	to	expand	the	table,	and	see	the	table	column	names.

In	addition,	Oracle	SQL	Developer	opens	a	new	tab	in	the	main	Worksheet	area	and	the
table	columns	(showing	details	about	type,	nullable,	and	more).	Above	the	data	are	other
tabs	that	you	can	click	on—Data	shows	the	contents	of	the	table,	Constraints	lists	primary
and	foreign	keys	and	any	other	defined	constraints,	Details	lists	all	sorts	of	information
about	the	table	and	how	it	is	being	used,	SQL	lists	SQL	code	that	could	be	used	to	create
the	table,	and	so	on.	Feel	free	to	browse	around;	this	data	and	view	are	useful	for	working
with	Oracle.

Summary
In	this	lesson,	you	learned	how	to	connect	and	log	in	to	Oracle,	and	how	to	enter	and
execute	SQL	statements.	You	also	created	and	populated	the	example	tables.	Armed	with
this	knowledge,	you	can	now	dig	in	to	the	all-important	SELECT	statement.

Lesson	4.	Retrieving	Data

In	this	lesson,	you’ll	learn	how	to	use	the	SELECT	statement	to	retrieve	one	or	more
columns	of	data	from	a	table.

The	 	Statement

Note:	Sample	Tables	Required

From	this	point	on,	all	lessons	use	the	sample	database	tables.	If	you	have	yet	to
install	these,	please	refer	to	Lesson	3,	“Working	with	Oracle,”	before	proceeding.

As	explained	in	Lesson	1,	“Understanding	SQL,”	SQL	statements	are	made	up	of	plain
English	terms.	These	terms	are	called	keywords,	and	every	SQL	statement	is	made	up	of
one	or	more	keywords.	The	SQL	statement	you’ll	probably	use	most	frequently	is	the
SELECT	statement.	Its	purpose	is	to	retrieve	information	from	one	or	more	tables.

To	use	SELECT	to	retrieve	table	data,	you	must,	at	a	minimum,	specify	two	pieces	of
information—what	you	want	to	select,	and	from	where	you	want	to	select	it.

Retrieving	Individual	Columns
We’ll	start	with	a	simple	SQL	SELECT	statement,	as	follows:

Input

SELECT	prod_name
FROM	products;

Tip:	Type	Then	Execute

By	now	it	should	be	obvious,	but	I’ll	remind	you	one	last	time.	Type	the	SQL	code
in	the	Oracle	SQL	Developer	Worksheet	screen,	and	then	click	the	Run	Script
button	to	execute	it.	Results	appear	in	a	screen	below	the	Worksheet.	If	you	need
more	room,	you	can	drag	and	resize	all	the	screens.

Analysis

The	previous	statement	uses	the	SELECT	statement	to	retrieve	a	single	column	called
prod_name	from	the	products	table.	The	desired	column	name	is	specified	right	after
the	SELECT	keyword,	and	the	FROM	keyword	specifies	the	name	of	the	table	from	which
to	retrieve	the	data.	The	following	shows	the	output	from	this	statement:

Output
+–––––-+
|	prod_name						|
+–––––-+
|	.5	ton	anvil			|
|	1	ton	anvil				|

|	2	ton	anvil				|
|	Oil	can								|
|	Fuses										|
|	Sling										|
|	TNT	(1	stick)		|
|	TNT	(5	sticks)	|
|	Bird	seed						|
|	Carrots								|
|	Safe											|
|	Detonator						|
|	JetPack	1000			|
|	JetPack	2000			|
+–––––-+

Note:	Unsorted	Data

If	you	tried	this	query	yourself,	you	might	have	discovered	that	the	data	displayed
in	a	different	order	than	shown	here.	If	this	is	the	case,	don’t	worry—it	is	working
exactly	as	it	is	supposed	to.	If	query	results	are	not	explicitly	sorted	(we’ll	get	to
that	in	the	next	lesson),	data	will	be	returned	in	no	order	of	any	significance.	It
might	be	the	order	in	which	the	data	was	added	to	the	table,	but	it	might	not.	As
long	as	your	query	returned	the	same	number	of	rows,	then	it	is	working.

A	simple	SELECT	statement	like	the	one	just	shown	returns	all	the	rows	in	a	table.	Data	is
not	filtered	(so	as	to	retrieve	a	subset	of	the	results),	nor	is	it	sorted.	We’ll	discuss	these
topics	in	the	next	few	lessons.

Note:	Terminating	Statements

Multiple	SQL	statements	must	be	separated	by	semicolons	(the	;	character).	Oracle
(like	most	DBMSs)	does	not	require	that	a	semicolon	be	specified	after	single
statements.	That	said,	most	SQL	developers	get	in	the	habit	of	always	terminating
their	SQL	statements	with	semicolons,	even	when	they	are	not	needed.

Note:	SQL	Statements	and	Case

Note	that	SQL	statements	are	not	case	sensitive,	so	SELECT	is	the	same	as
select,	which	is	the	same	as	Select.	Many	SQL	developers	find	that	using
uppercase	for	all	SQL	keywords	and	lowercase	for	column	and	table	names	makes
code	easier	to	read	and	debug.

However,	be	aware	that	while	the	SQL	language	is	not	case	sensitive,	identifiers
(the	names	of	databases,	tables,	and	columns)	might	be.	As	a	best	practice,	pick	a
case	convention,	and	use	it	consistently.

Tip:	Use	of	White	Space

All	extra	white	space	within	a	SQL	statement	is	ignored	when	that	statement	is
processed.	You	can	specify	SQL	statements	on	one	long	line	or	break	them	up	over
many	lines.	Most	SQL	developers	find	that	breaking	up	statements	over	multiple
lines	makes	them	easier	to	read	and	debug.

Retrieving	Multiple	Columns
To	retrieve	multiple	columns	from	a	table,	you	use	the	same	SELECT	statement.	The	only
difference	is	that	you	must	specify	multiple	column	names	after	the	SELECT	keyword,
and	separate	each	column	by	a	comma.

Tip:	Take	Care	with	Commas

When	selecting	multiple	columns,	be	sure	to	specify	a	comma	between	each
column	name,	but	not	after	the	last	column	name.	Doing	so	generates	an	error.

The	following	SELECT	statement	retrieves	three	columns	from	the	products	table:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_name,	prod_price
FROM	products;

Analysis

Just	as	in	the	prior	example,	this	statement	uses	the	SELECT	statement	to	retrieve	data
from	the	products	table.	In	this	example,	three	column	names	are	specified,	each
separated	by	a	comma.	The	output	from	this	statement	is	as	follows:

Output
Click	here	to	view	code	image

+–––+–––––-+––––+
|	prod_id	|	prod_name						|	prod_price	|
+–––+–––––-+––––+
ANV01	.5 ton anvil	5.99
ANV02	1 ton anvil	9.99
ANV03	2 ton anvil	14.99
OL1	Oil can	8.99
FU1	Fuses	3.42
SLING	Sling	4.49
TNT1	TNT (1 stick)	2.5
TNT2	TNT (5 sticks)	10
FB	Bird seed	10
FC	Carrots	2.5
SAFE	Safe	50
DTNTR	Detonator	13
JP1000	JetPack 1000	35
JP2000	JetPack 2000	55

+–––+–––––-+––––+

Note:	Presentation	of	Data

SQL	statements	typically	return	raw,	unformatted	data.	Data	formatting	is	a
presentation	issue,	not	a	retrieval	issue.	Therefore,	presentation	(for	example,
alignment	and	displaying	the	price	values	as	currency	amounts	with	the	currency
symbol	and	commas)	is	typically	specified	in	the	application	that	displays	the	data.
Actual	raw	retrieved	data	(without	application-provided	formatting)	is	rarely
displayed	as	is.

Retrieving	All	Columns
In	addition	to	being	able	to	specify	desired	columns	(one	or	more,	as	shown	previously),
you	can	also	use	SELECT	statements	to	request	all	columns	without	having	to	list	them
individually.	This	is	done	using	the	asterisk	(*)	wildcard	character	in	lieu	of	actual	column
names,	as	follows:

Input

SELECT	*
FROM	products;

Analysis

When	you	specify	a	wildcard	(*),	all	the	columns	in	the	table	are	returned.	The	columns
are	in	the	order	in	which	the	columns	appear	in	the	table	definition.	However,	you	cannot
rely	on	this	because	changes	to	table	schemas	(adding	and	removing	columns,	for
example)	could	cause	ordering	changes.

Caution:	Using	Wildcards

As	a	rule,	you	are	better	off	not	using	the	*	wildcard	unless	you	really	do	need
every	column	in	the	table.	Even	though	use	of	wildcards	might	save	you	the	time
and	effort	needed	to	list	the	desired	columns	explicitly,	retrieving	unnecessary
columns	usually	slows	down	the	performance	of	your	retrieval	and	your
application.

Tip:	Retrieving	Unknown	Columns

There	is	one	big	advantage	to	using	wildcards.	As	you	do	not	explicitly	specify
column	names	(because	the	asterisk	retrieves	every	column),	it	is	possible	to
retrieve	columns	whose	names	are	unknown.

Retrieving	Distinct	Rows
As	you	have	seen,	SELECT	returns	all	matched	rows.	But	what	if	you	did	not	want	every
occurrence	of	every	value?	For	example,	suppose	you	wanted	the	vendor	ID	of	all	vendors
with	products	in	your	products	table:

Input

SELECT	vend_id
FROM	products;

Output
+–––+
|	vend_id	|
+–––+
|				1001	|
|				1001	|
|				1001	|
|				1002	|
|				1002	|
|				1003	|
|				1003	|
|				1003	|
|				1003	|
|				1003	|
|				1003	|
|				1003	|
|				1005	|
|				1005	|
+–––+

The	SELECT	statement	returned	14	rows	(even	though	only	4	vendors	are	in	that	list)
because	14	products	are	listed	in	the	products	table.	So	how	could	you	retrieve	a	list	of
distinct	values?

The	solution	is	to	use	the	DISTINCT	keyword	which,	as	its	name	implies,	instructs
Oracle	to	only	return	distinct	values:

Input

SELECT	DISTINCT	vend_id
FROM	products;

Analysis

SELECT	DISTINCT	vend_id	tells	Oracle	to	only	return	distinct	(unique)	vend_id
rows,	and	so	only	4	rows	are	returned,	as	shown	in	the	following	output.	If	you	use	it,	you
must	place	the	DISTINCT	keyword	directly	in	front	of	the	column	names:

Output
+–––+
|	vend_id	|
+–––+
|				1001	|
|				1002	|
|				1003	|

|				1005	|
+–––+

Caution:	Can’t	Be	Partially	

The	DISTINCT	keyword	applies	to	all	columns,	not	just	the	one	it	precedes.	If	you
were	to	specify	SELECT	DISTINCT	vend_id,	prod_price,	all	rows
would	be	retrieved	unless	both	of	the	specified	columns	were	distinct.

Using	Fully	Qualified	Table	Names
The	SQL	examples	used	thus	far	have	referred	to	columns	by	just	the	column	names.
Referring	to	columns	using	fully	qualified	names	(using	both	the	table	and	column	names)
is	also	possible.	Look	at	this	example:

Input

SELECT	products.prod_name
FROM	products;

This	SQL	statement	is	functionally	identical	to	the	first	one	used	in	this	lesson,	but	here	a
fully	qualified	column	name	is	specified.

Table	names,	too,	may	be	fully	qualified,	as	shown	here:

Input

SELECT	products.prod_name
FROM	crashcourse.products;

Once	again,	this	statement	is	functionally	identical	to	the	one	just	used	(assuming,	of
course,	that	the	products	table	is	indeed	in	the	crashcourse	database).

Situations	exist	where	fully	qualified	names	are	required,	as	we	will	see	in	later	lessons.
For	now,	it	is	worth	noting	this	syntax	so	you’ll	know	what	it	is	if	you	run	across	it.

Using	Comments
As	you	have	seen,	SQL	statements	are	instructions	that	Oracle	processes.	But	what	if	you
wanted	to	include	text	that	you	do	not	want	processed	and	executed?	Why	would	you	ever
want	to	do	this?	Here	are	a	few	reasons:

	The	SQL	statements	we’ve	been	using	here	are	all	very	short	and	very	simple.	But,
as	your	SQL	statement	grows	(in	length	and	complexity),	you’ll	want	to	include
descriptive	comments	(for	your	own	future	reference	or	for	whoever	has	to	work	on
the	project	next).	You	need	to	embed	these	comments	in	the	SQL	scripts,	but	they
are	obviously	not	intended	for	Oracle	processing.	(For	an	example	of	this,	see	the
create.sql	and	populate.sql	files	you	used	in	Lesson	3.)

	The	same	is	true	for	headers	at	the	top	of	a	SQL	file,	perhaps	containing	the
programmer	contact	information	and	a	description	and	notes.	(You	also	see	this	use

case	in	the	create.sql	and	populate.sql	files.)

	Another	important	use	for	comments	is	to	temporarily	stop	SQL	code	from	being
executed.	If	you	were	working	with	a	long	SQL	statement	and	wanted	to	test	just
part	of	it,	you	could	comment	out	some	of	the	code	so	that	Oracle	saw	it	as
comments	and	ignored	it.

Oracle	supports	two	forms	of	comment	syntax.	We’ll	start	with	inline	comments:

Input
Click	here	to	view	code	image

SELECT	prod_name			—	this	is	a	comment
FROM	products;

Analysis

You	may	embed	comments	inline	using	--	(two	hyphens).	Anything	after	the	--	is
considered	comment	text,	making	this	a	good	option	for	describing	columns	in	a	CREATE
TABLE	statement,	for	example.

Here	is	another	form	of	inline	comment:

Input

—	This	is	a	comment
SELECT	prod_name
FROM	products;

Analysis

A	--	at	the	start	of	a	line	makes	the	entire	line	a	comment.	You	can	see	this	format
comment	used	in	the	accompanying	create.sql	and	populate.sql	scripts.

You	can	also	create	multi-line	comments,	and	comments	that	stop	and	start	anywhere
within	the	script:

Input

/*	SELECT	prod_name,	vend_id
FROM	products;	*/

SELECT	prod_name
FROM	products;

Analysis

/*	starts	a	comment,	and	*/	ends	it.	Anything	between	/*	and	*/	is	comment	text.	This
type	of	comment	is	often	used	to	comment	out	code,	as	shown	in	this	example.	Here,	two
SELECT	statements	are	defined,	but	the	first	won’t	execute	because	it	has	been
commented	out.

Tip:	Oracle	SQL	Developer	Color	Coding

You	might	have	noticed	that	Oracle	SQL	Developer	color	codes	your	PL/SQL.	SQL
statements	are	usually	displayed	in	blue,	identifiers	(like	table	and	column	names)
are	in	black,	and	so	on.	Color	coding	makes	it	easier	to	read	your	code	and	to	find
mistakes;	if	you’ve	mistyped	a	PL/SQL	statement,	it’ll	probably	appear	in	the
wrong	color.	Oracle	SQL	Developer	also	color	codes	any	comments	(inline	or
multi-line)	and	displays	them	in	a	light	gray.	This	makes	it	easy	to	locate	comments
and	commented-out	code	(and	can	also	help	you	find	code	that	you	no	longer	want
commented	out).

Summary
In	this	lesson,	you	learned	how	to	use	the	SQL	SELECT	statement	to	retrieve	a	single
table	column,	multiple	table	columns,	and	all	table	columns.	You	also	learned	about
commenting	and	saw	various	ways	that	you	can	use	comments.	In	the	next	lesson,	you’ll
learn	how	to	sort	the	retrieved	data.

Lesson	5.	Sorting	Retrieved	Data

This	lesson	shows	you	how	to	use	the	SELECT	statement’s	ORDER	BY	clause	to	sort
retrieved	data	as	needed.

Sorting	Data
As	you	learned	in	the	last	lesson,	the	following	SQL	statement	returns	a	single	column
from	a	database	table.	But	look	at	the	output.	The	data	appears	to	be	displayed	in	no
particular	order	at	all:

Input

SELECT	prod_name
FROM	products;

Output
+–––––-+
|	prod_name						|
+–––––-+
|	.5	ton	anvil			|
|	1	ton	anvil				|
|	2	ton	anvil				|
|	Oil	can								|
|	Fuses										|
|	Sling										|
|	TNT	(1	stick)		|
|	TNT	(5	sticks)	|
|	Bird	seed						|
|	Carrots								|
|	Safe											|
|	Detonator						|
|	JetPack	1000			|
|	JetPack	2000			|
+–––––-+

Actually,	the	retrieved	data	is	not	in	a	mere	random	order.	If	unsorted,	data	typically
displays	in	the	order	in	which	it	appears	in	the	underlying	tables.	This	could	be	the	order
in	which	the	data	was	added	to	the	tables	initially.	However,	if	data	was	subsequently
updated	or	deleted,	the	order	is	affected	by	how	Oracle	reuses	reclaimed	storage	space.
The	end	result	is	that	you	cannot	(and	should	not)	rely	on	the	sort	order	if	you	do	not
explicitly	control	it.	Relational	database	design	theory	states	that	the	sequence	of	retrieved
data	cannot	be	assumed	to	have	significance	if	ordering	was	not	explicitly	specified.

Clause

SQL	statements	are	made	up	of	clauses,	some	required	and	some	optional.	A	clause
usually	consists	of	a	keyword	and	supplied	data.	An	example	of	this	is	the	SELECT
statement’s	FROM	clause,	which	you	saw	in	the	last	lesson.

To	explicitly	sort	data	retrieved	using	a	SELECT	statement,	you	use	the	ORDER	BY
clause.	ORDER	BY	takes	the	name	of	one	or	more	columns	by	which	to	sort	the	output.

Look	at	the	following	example:

Input

SELECT	prod_name
FROM	products
ORDER	BY	prod_name;

Analysis

This	statement	is	identical	to	the	earlier	statement,	except	it	also	specifies	an	ORDER	BY
clause	instructing	Oracle	to	sort	the	data	alphabetically	by	the	prod_name	column.	The
results	are	the	following:

Output
+–––––-+
|	prod_name						|
+–––––-+
|	.5	ton	anvil			|
|	1	ton	anvil				|
|	2	ton	anvil				|
|	Bird	seed						|
|	Carrots								|
|	Detonator						|
|	Fuses										|
|	JetPack	1000			|
|	JetPack	2000			|
|	Oil	can								|
|	Safe											|
|	Sling										|
|	TNT	(1	stick)		|
|	TNT	(5	sticks)	|
+–––––-+

Tip:	Sorting	by	Nonselected	Columns

More	often	than	not,	the	columns	used	in	an	ORDER	BY	clause	are	ones	that	were
selected	for	display.	However,	this	is	actually	not	required,	and	sorting	data	by	a
column	that	is	not	retrieved	is	perfectly	legal.

Sorting	by	Multiple	Columns
Sorting	data	by	more	than	one	column	is	often	necessary.	For	example,	you	might	want	to
display	an	employee	list	sorted	by	last	name	and	first	name	(first	sort	by	last	name,	and
then	within	each	last	name	sort	by	first	name).	This	is	useful	if	multiple	employees	have
the	same	last	name.

To	sort	by	multiple	columns,	simply	specify	the	column	names	separated	by	commas	(just
as	you	do	when	you	are	selecting	multiple	columns).

The	following	code	retrieves	three	columns	and	sorts	the	results	by	two	of	them—first	by
price	and	then	by	name:

Input

Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products
ORDER	BY	prod_price,	prod_name;

Output
Click	here	to	view	code	image

+–––+––––+–––––-+
|	prod_id	|	prod_price	|	prod_name						|
+–––+––––+–––––-+
FC	2.5	Carrots
TNT1	2.5	TNT (1 stick)
FU1	3.42	Fuses
SLING	4.49	Sling
ANV01	5.99	.5 ton anvil
OL1	8.99	Oil can
ANV02	9.99	1 ton anvil
FB	10	Bird seed
TNT2	10	TNT (5 sticks)
DTNTR	13	Detonator
ANV03	14.99	2 ton anvil
JP1000	35	JetPack 1000
SAFE	50	Safe
JP2000	55	JetPack 2000
+–––+––––+–––––-+

You	should	understand	that	when	you	sort	by	multiple	columns,	the	sort	sequence	is
exactly	as	specified.	In	other	words,	using	the	output	in	the	previous	example,	the	products
are	sorted	by	the	prod_name	column	only	when	multiple	rows	have	the	same
prod_price	value.	If	all	the	values	in	the	prod_price	column	had	been	unique,	no
data	would	have	been	sorted	by	prod_name.

As	you’ve	seen,	ORDER	BY	sorts	results	by	columns,	the	names	of	which	are	provided	in
a	comma-delimited	list.	Oracle	also	allows	you	to	specify	the	sort	order	by	referring	to	the
column	position	in	the	SELECT	statement.	Here	is	the	SQL	statement	we	just	used:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products
ORDER	BY	prod_price,	prod_name;

What	follows	is	the	same	SQL	statement,	but	with	a	slightly	different	look	at	the	ORDER
BY	clause:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products

ORDER	BY	2,	3;

Analysis

Instead	of	specifying	column	names,	ORDER	BY	2,	3	instructs	Oracle	to	sort	by	the
second	and	third	columns	in	the	SELECT	statement,	namely	prod_price	and
prod_name.	Either	way,	the	output	is	the	same.

Tip:	Use	Sequence	Number	Ordering	with	Care

The	type	of	ORDER	BY	just	shown,	where	SELECT	column	position	is	used
instead	of	column	names,	is	referred	to	as	ordering	by	sequence	number.	I	show
you	this	syntax	so	that	you’ll	know	what	it	is	if	you	run	across	it.	But,	in	general,
using	this	type	of	ORDER	BY	statement	is	risky,	because	if	you	ever	change	the
SELECT	statement,	you	might	inadvertently	break	your	ordering.	As	a	rule,	being
explicit	is	always	better.

Specifying	Sort	Direction
Data	sorting	is	not	limited	to	ascending	sort	orders	(from	A	to	Z).	Although	this	is	the
default	sort	order,	you	can	also	use	the	ORDER	BY	clause	to	sort	in	descending	order
(from	Z	to	A).	To	sort	by	descending	order,	you	must	specify	the	keyword	DESC.

The	following	example	sorts	the	products	by	price	in	descending	order	(most	expensive
first):

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products
ORDER	BY	prod_price	DESC;

Output
Click	here	to	view	code	image

+–––+––––+–––––-+
|	prod_id	|	prod_price	|	prod_name						|
+–––+––––+–––––-+
JP2000	55	JetPack 2000
SAFE	50	Safe
JP1000	35	JetPack 1000
ANV03	14.99	2 ton anvil
DTNTR	13	Detonator
TNT2	10	TNT (5 sticks)
FB	10	Bird seed
ANV02	9.99	1 ton anvil
OL1	8.99	Oil can
ANV01	5.99	.5 ton anvil
SLING	4.49	Sling
FU1	3.42	Fuses
FC	2.5	Carrots

|	TNT1				|								2.5	|	TNT	(1	stick)		|
+–––+––––+–––––-+

But	what	if	you	were	to	sort	by	multiple	columns?	The	following	example	sorts	the
products	in	descending	order	(most	expensive	first),	plus	product	name:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products
ORDER	BY	prod_price	DESC,	prod_name;

Output
Click	here	to	view	code	image

+–––+––––+–––––-+
|	prod_id	|	prod_price	|	prod_name						|
+–––+––––+–––––-+
JP2000	55	JetPack 2000
SAFE	50	Safe
JP1000	35	JetPack 1000
ANV03	14.99	2 ton anvil
DTNTR	13	Detonator
FB	10	Bird seed
TNT2	10	TNT (5 sticks)
ANV02	9.99	1 ton anvil
OL1	8.99	Oil can
ANV01	5.99	.5 ton anvil
SLING	4.49	Sling
FU1	3.42	Fuses
FC	2.5	Carrots
TNT1	2.5	TNT (1 stick)
+–––+––––+–––––-+

Analysis

The	DESC	keyword	only	applies	to	the	column	name	that	directly	precedes	it.	In	the
previous	example,	DESC	was	specified	for	the	prod_price	column,	but	not	for	the
prod_name	column.	Therefore,	the	prod_price	column	is	sorted	in	descending	order,
but	the	prod_name	column	(within	each	price)	is	still	sorted	in	standard	ascending	order.

Tip:	Sorting	Descending	on	Multiple	Columns

If	you	want	to	sort	descending	on	multiple	columns,	be	sure	each	column	has	its
own	DESC	keyword.

The	opposite	of	DESC	is	ASC	(for	ascending),	which	you	may	specify	to	sort	in	ascending
order.	In	practice,	however,	you	don’t	usually	use	ASC	because	ascending	order	is	the
default	sequence	(and	is	assumed	if	neither	ASC	nor	DESC	are	specified).

Tip:	Case	Sensitivity	and	Sort	Orders

When	you	sort	textual	data,	is	A	the	same	as	a?	And	does	a	come	before	B	or	after
Z?	These	are	not	theoretical	questions,	and	the	answers	depend	on	how	the	database
is	set	up.

In	dictionary	sort	order,	A	is	treated	the	same	as	a,	and	that	is	the	default	behavior
in	Oracle	(and	indeed	most	DBMSs).	However,	administrators	can	change	this
behavior	if	needed.	(If	your	database	contains	lots	of	foreign	language	characters,
this	might	become	necessary.)

The	key	here	is	that,	if	you	do	need	an	alternate	sort	order,	you	cannot	accomplish	it
with	a	simple	ORDER	BY	clause.	You	must	contact	your	database	administrator.

Summary
In	this	lesson,	you	learned	how	to	sort	retrieved	data	using	the	SELECT	statement’s
ORDER	BY	clause.	You	can	use	this	clause,	which	must	be	the	last	in	the	SELECT
statement,	to	sort	data	on	one	or	more	columns	as	needed.

Lesson	6.	Filtering	Data

This	lesson	shows	you	how	to	use	the	SELECT	statement’s	WHERE	clause	to	specify
search	conditions.

Using	the	 	Clause
Database	tables	usually	contain	large	amounts	of	data,	and	you	seldom	need	to	retrieve	all
the	rows	in	a	table.	More	often	than	not,	you’ll	want	to	extract	a	subset	of	the	table’s	data
as	needed	for	specific	operations	or	reports.	Retrieving	just	the	data	you	want	involves
specifying	search	criteria,	also	known	as	a	filter	condition.

Within	a	SELECT	statement,	you	filter	data	by	specifying	search	criteria	in	the	WHERE
clause.	You	specify	the	WHERE	clause	right	after	the	table	name	(the	FROM	clause),	as
follows:

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_price	=	2.50;

Analysis

This	statement	retrieves	two	columns	from	the	products	table,	but	instead	of	returning
all	rows,	only	rows	with	a	prod_price	value	of	2.50	are	returned,	as	follows:

Output
Click	here	to	view	code	image

+–––––+––––+
|	prod_name					|	prod_price	|
+–––––+––––+
|	Carrots							|								2.5	|
|	TNT	(1	stick)	|								2.5	|
+–––––+––––+

Note:	No	 	Clause	Specified

In	the	interests	of	saving	space	(and	your	typing),	I	omitted	the	ORDER	BY	clause
in	many	of	these	examples.	As	such,	it	is	entirely	possible	that	your	output	won’t
exactly	match	the	output	in	the	book.	Although	the	number	of	returned	rows	should
always	match,	their	order	might	not.	Of	course,	feel	free	to	add	an	ORDER	BY
clause	if	you	want;	it	needs	to	go	after	the	WHERE	clause.

Note:	Decimal	Rounding

Even	though	the	WHERE	clause	specified	a	value	of	2.50,	your	returned	data	might
show	the	value	rounded	to	2.5	(as	it	did	for	me).	Oracle,	like	all	DBMSs,	has
default	behaviors	for	how	it	formats	returned	data,	and	the	result	might	not	always
be	exactly	what	you	want.	In	Lesson	11,	“Using	Data	Manipulation	Functions,”	you
learn	how	to	use	functions	to	format	data	exactly	as	needed.

This	example	uses	a	simple	equality	test:	It	checks	to	see	whether	a	column	has	a	specified
value,	and	it	filters	the	data	accordingly.	However,	SQL	enables	you	to	do	more	than	just
test	for	equality.

Tip:	SQL	Versus	Application	Filtering

You	can	also	filter	data	at	the	application	level.	To	do	this,	the	SQL	SELECT
statement	retrieves	more	data	than	is	actually	required	for	the	client	application,	and
the	client	code	loops	through	the	returned	data	to	extract	just	the	needed	rows.

As	a	rule,	this	practice	is	strongly	discouraged.	Databases	are	optimized	to	perform
filtering	quickly	and	efficiently.	Making	the	client	application	(or	development
language)	do	the	database’s	job	dramatically	impacts	application	performance	and
creates	applications	that	cannot	scale	properly.	In	addition,	if	data	is	filtered	at	the
client,	the	server	has	to	send	unneeded	data	across	the	network	connections,
resulting	in	a	waste	of	network	bandwidth	resources.

Caution:	 	Clause	Position

When	using	both	ORDER	BY	and	WHERE	clauses,	make	sure	ORDER	BY	comes
after	the	WHERE;	otherwise,	an	error	is	generated.	(See	Lesson	5,	“Sorting
Retrieved	Data,”	for	more	information	on	using	ORDER	BY.)

The	 	Clause	Operators
The	first	WHERE	clause	we	looked	at	tests	for	equality—determining	whether	a	column
contains	a	specific	value.	Oracle	supports	a	whole	range	of	conditional	operators,	some	of
which	Table	6.1	lists.

TABLE	6.1	WHERE	Clause	Operators

Checking	Against	a	Single	Value
We	have	already	seen	an	example	of	testing	for	equality.	Here’s	one	more:

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_name	=	‘Fuses’;

Output
+–––—+––––+
|	prod_name	|	prod_price	|
+–––—+––––+
|	Fuses					|							3.42	|
+–––—+––––+

Analysis

Checking	for	WHERE	prod_name	=	'Fuses'	returned	a	single	row	with	a	value	of
Fuses.

Depending	on	how	your	Oracle	server	is	configured,	Oracle	could	be	case	sensitive	when
performing	matches,	in	which	case	fuses	and	Fuses	would	not	be	the	same.	Try	this
example:

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_name	=	‘fuses’;

Analysis

By	default,	Oracle	is	case	sensitive,	and	so	comparing	to	lowercase	fuses	returns	no
results,	because	fuses	and	Fuses	are	not	the	same.

Tip:	Case	Insensitive	Equality	Comparisons

So	how	can	you	find	fuses,	Fuses,	FUSES,	and	any	other	mix	of	upper-	and
lowercase?	The	trick	is	to	use	functions	to	change	everything	to	one	case,	either
upper	or	lower.	You’ll	learn	about	string	manipulation	functions	in	Lesson	10,
“Creating	Calculated	Fields.”

Now	look	at	a	few	examples	to	demonstrate	the	use	of	other	operators.

This	first	example	lists	all	products	that	cost	less	than	10:

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_price	<	10;

Output
Click	here	to	view	code	image

+–––––+––––+
|	prod_name					|	prod_price	|
+–––––+––––+
.5 ton anvil	5.99
1 ton anvil	9.99
Carrots	2.5
Fuses	3.42
Oil can	8.99
Sling	4.49
TNT (1 stick)	2.5
+–––––+––––+

This	next	statement	retrieves	all	products	costing	10	or	less	(resulting	in	two	additional
matches):

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_price	<=	10;

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
.5 ton anvil	5.99
1 ton anvil	9.99
Bird seed	10
Carrots	2.5
Fuses	3.42
Oil can	8.99
Sling	4.49

|	TNT	(1	stick)		|								2.5	|
|	TNT	(5	sticks)	|									10	|
+–––––-+––––+

Checking	for	Nonmatches
This	next	example	lists	all	products	not	made	by	vendor	1003:

Input

SELECT	vend_id,	prod_name
FROM	products
WHERE	vend_id	<>	1003;

Output
+–––+––––—+
|	vend_id	|	prod_name				|
+–––+––––—+
1001	.5 ton anvil
1001	1 ton anvil
1001	2 ton anvil
1002	Fuses
1005	JetPack 1000
1005	JetPack 2000
1002	Oil can
+–––+––––—+

Tip:	When	to	Use	Quotes

If	you	look	closely	at	the	conditions	used	in	the	examples’	WHERE	clauses,	you	will
notice	that	some	values	are	enclosed	in	single	quotes	(such	as	'Fuses'	used
previously),	and	others	are	not.	You	use	single	quotes	to	delimit	strings.	Comparing
a	value	against	a	column	that	is	a	string	datatype	requires	the	delimiting	quotes.
You	don’t	use	quotes	to	delimit	values	used	with	numeric	columns.

The	following	is	the	same	example,	except	this	one	uses	the	!=	operator	instead	of	<>:

Input

SELECT	vend_id,	prod_name
FROM	products
WHERE	vend_id	!=	1003;

Note:	 	Versus	

Yes,	both	<>	and	!=	look	for	nonmatches.	!=	means	not	equal	to,	and	<>	means
less	than	or	greater	than	(in	other	words,	not	equal	to).	Use	whichever	you	prefer.

Checking	for	a	Range	of	Values
To	check	for	a	range	of	values,	you	can	use	the	BETWEEN	operator.	Its	syntax	is	a	little
different	from	other	WHERE	clause	operators	because	it	requires	two	values:	the	beginning
and	end	of	the	range.	You	can	use	the	BETWEEN	operator,	for	example,	to	check	for	all
products	that	cost	between	5	and	10	or	for	all	dates	that	fall	between	specified	start	and
end	dates.

The	following	example	demonstrates	the	use	of	the	BETWEEN	operator	by	retrieving	all
products	with	a	price	between	5	and	10:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	prod_price	BETWEEN	5	AND	10;

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
.5 ton anvil	5.99
1 ton anvil	9.99
Bird seed	10
Oil can	8.99
TNT (5 sticks)	10
+–––––-+––––+

Analysis

As	shown	in	this	example,	when	you	use	BETWEEN,	you	must	specify	two	values—the
low	end	and	high	end	of	the	desired	range.	You	must	also	separate	the	two	values	by	the
AND	keyword.	BETWEEN	matches	all	the	values	in	the	range,	including	the	specified	range
start	and	end	values.

Checking	for	No	Value
When	creating	a	table,	the	table	designer	can	specify	whether	individual	columns	may
contain	no	value.	When	a	column	contains	no	value,	it	is	said	to	contain	a	NULL	value.
Columns	destined	to	contain	optional	data	are	often	created	this	way.

NULL

No	value,	as	opposed	to	a	field	containing	0,	or	an	empty	string,	or	just	spaces.

The	SELECT	statement	has	a	special	WHERE	clause	that	you	can	use	to	check	for	columns
with	NULL	values—the	IS	NULL	clause.	The	syntax	looks	like	this:

Input

SELECT	prod_name
FROM	products
WHERE	prod_price	IS	NULL;

This	statement	returns	a	list	of	all	products	that	have	no	price	(an	empty	prod_price
field,	not	a	price	of	0),	and	because	there	are	none,	no	data	is	returned.	The	customers
table,	however,	does	contain	columns	with	NULL	values—the	cust_email	column
contains	NULL	if	a	customer	has	no	email	address	on	file:

Input

SELECT	cust_id
FROM	customers
WHERE	cust_email	IS	NULL;

Output
+–––+
|	cust_id	|
+–––+
|			10002	|
|			10005	|
+–––+

Caution:	 	and	Nonmatches

You	might	expect	that	when	you	filter	to	select	all	rows	that	do	not	have	a	particular
value,	rows	with	a	NULL	will	be	returned.	But	they	will	not.	Because	of	the	special
meaning	of	unknown,	the	database	does	not	know	whether	or	not	they	match,	and
so	they	are	not	returned	when	filtering	for	matches	or	when	filtering	for	non-
matches.

When	filtering	data,	make	sure	to	verify	that	the	rows	with	a	NULL	in	the	filtered
column	are	really	present	in	the	returned	data.

Summary
In	this	lesson,	you	learned	how	to	filter	returned	data	using	the	SELECT	statement’s
WHERE	clause.	You	learned	how	to	test	for	equality,	non-equality,	greater	than	and	less
than,	value	ranges,	and	NULL	values.

Lesson	7.	Advanced	Data	Filtering

This	lesson	shows	you	how	to	combine	WHERE	clauses	to	create	powerful	and
sophisticated	search	conditions,	and	how	to	use	the	NOT	and	IN	operators.

Combining	 	Clauses
All	the	WHERE	clauses	introduced	in	Lesson	6,	“Filtering	Data,”	filter	data	on	a	single
criterion.	For	a	greater	degree	of	filter	control,	Oracle	allows	you	to	specify	multiple
WHERE	clauses.	You	may	use	these	clauses	in	two	ways:	as	AND	clauses	or	as	OR	clauses.

Operator

A	special	keyword	used	to	join	or	change	clauses	in	a	WHERE	clause.	Also	known
as	logical	operators.

Using	the	 	Operator
To	filter	by	more	than	one	column,	you	use	the	AND	operator	to	append	conditions	to	your
WHERE	clause.	The	following	code	demonstrates	this:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_price,	prod_name
FROM	products
WHERE	vend_id	=	1003	AND	prod_price	<=	10;

Analysis

The	preceding	SQL	statement	retrieves	the	product	name	and	price	for	all	products	made
by	vendor	1003	as	long	as	the	price	is	10	or	less.	The	WHERE	clause	in	this	SELECT
statement	is	made	up	of	two	conditions,	and	the	keyword	AND	is	used	to	join	them.	AND
instructs	the	DBMS	to	return	only	rows	that	meet	all	the	conditions	specified.	If	a	product
is	made	by	vendor	1003	but	it	costs	more	than	10,	it	is	not	retrieved.	Similarly,	products
that	cost	less	than	10	that	are	made	by	a	vendor	other	than	the	one	specified	are	not
retrieved.	The	output	generated	by	this	SQL	statement	is	as	follows:

Output
Click	here	to	view	code	image

+–––+––––+–––––-+
|	prod_id	|	prod_price	|	prod_name						|
+–––+––––+–––––-+
FB	10	Bird seed
FC	2.5	Carrots
SLING	4.49	Sling
TNT1	2.5	TNT (1 stick)
TNT2	10	TNT (5 sticks)
+–––+––––+–––––-+

AND

A	keyword	used	in	a	WHERE	clause	to	specify	that	only	rows	matching	all	the
specified	conditions	should	be	retrieved.

The	previous	example	contained	a	single	AND	clause	and	was	thus	made	up	of	two	filter
conditions.	You	could	use	additional	filter	conditions	as	well,	each	separated	by	an	AND
keyword.

Note:	No	 	Clause	Specified

As	before,	I	omitted	the	ORDER	BY	clause	in	many	of	these	examples.	Feel	free	to
add	an	ORDER	BY	clause	if	you	want.

Using	the	 	Operator
The	OR	operator	is	exactly	the	opposite	of	AND.	The	OR	operator	instructs	Oracle	to
retrieve	rows	that	match	either	condition.

Look	at	the	following	SELECT	statement:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	vend_id	=	1002	OR	vend_id	=	1003;

Analysis

The	preceding	SQL	statement	retrieves	the	product	name	and	price	for	any	products	made
by	either	of	the	two	specified	vendors.	The	OR	operator	tells	the	DBMS	to	match	either
condition,	not	both.	If	an	AND	operator	had	been	used	here,	no	data	would	be	returned	(it
would	have	created	a	WHERE	clause	that	could	never	be	matched).	The	output	generated
by	this	SQL	statement	is	as	follows:

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
Detonator	13
Bird seed	10
Carrots	2.5
Fuses	3.42
Oil can	8.99
Safe	50
Sling	4.49
TNT (1 stick)	2.5
TNT (5 sticks)	10

+–––––-+––––+

OR

A	keyword	used	in	a	WHERE	clause	to	specify	that	any	rows	matching	either	of	the
specified	conditions	should	be	retrieved.

Understanding	Order	of	Evaluation
WHERE	clauses	can	contain	any	number	of	AND	and	OR	operators.	Combining	the	two
enables	you	to	perform	sophisticated	and	complex	filtering.

But	combining	AND	and	OR	operators	presents	an	interesting	problem.	To	demonstrate
this,	look	at	an	example.	You	need	a	list	of	all	products	costing	10	or	more	made	by
vendors	1002	and	1003.	The	following	SELECT	statement	uses	a	combination	of	AND
and	OR	operators	to	build	a	WHERE	clause:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	vend_id	=	1002	OR	vend_id	=	1003	AND	prod_price	>=	10;

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
Detonator	13
Bird seed	10
Fuses	3.42
Oil can	8.99
Safe	50
TNT (5 sticks)	10
+–––––-+––––+

Analysis

Look	at	the	previously	listed	results.	Two	of	the	rows	returned	have	prices	less	than	10—
so,	obviously,	the	rows	were	not	filtered	as	intended.	Why	did	this	happen?	The	answer	is
the	order	of	evaluation.	SQL	(like	most	languages)	processes	AND	operators	before	OR
operators.	When	SQL	sees	the	preceding	WHERE	clause,	it	reads	products	made	by	vendor
1002	regardless	of	price,	and	any	products	costing	10	or	more	made	by	vendor	1003.	In
other	words,	because	AND	ranks	higher	in	the	order	of	evaluation,	the	wrong	operators
were	joined	together.

The	solution	to	this	problem	is	to	use	parentheses	to	explicitly	group	related	operators.
Take	a	look	at	the	following	SELECT	statement	and	output:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	(vend_id	=	1002	OR	vend_id	=	1003)	AND	prod_price	>=	10;

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
Detonator	13
Bird seed	10
Safe	50
TNT (5 sticks)	10
+–––––-+––––+

Analysis

The	only	difference	between	this	SELECT	statement	and	the	earlier	one	is	that,	in	this
statement,	the	first	two	WHERE	clause	conditions	are	enclosed	within	parentheses.	Because
parentheses	have	a	higher	order	of	evaluation	than	either	AND	or	OR	operators,	the	DBMS
first	filters	the	OR	condition	within	those	parentheses.	The	SQL	statement	then	becomes
any	products	made	by	either	vendor	1002	or	vendor	1003	costing	10	or	greater,	which
is	exactly	what	you	want.

Tip:	Using	Parentheses	in	 	Clauses

Whenever	you	write	WHERE	clauses	that	use	both	AND	and	OR	operators,	use
parentheses	to	explicitly	group	operators.	Don’t	ever	rely	on	the	default	evaluation
order,	even	if	it	is	exactly	what	you	want.	There	is	no	downside	to	using
parentheses,	and	you	are	always	better	off	eliminating	any	ambiguity.

Using	the	 	Operator
Parentheses	have	another	very	different	use	in	WHERE	clauses.	You	use	the	IN	operator		to
specify	a	range	of	conditions,	any	of	which	can	be	matched.	IN	takes	a	comma-delimited
list	of	valid	values,	all	enclosed	within	parentheses.	The	following	example	demonstrates
this:

Input

SELECT	prod_name,	prod_price
FROM	products
WHERE	vend_id	IN	(1002,1003)
ORDER	BY	prod_name;

Output

Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
Bird seed	10
Carrots	2.5
Detonator	13
Fuses	3.42
Oil can	8.99
Safe	50
Sling	4.49
TNT (1 stick)	2.5
TNT (5 sticks)	10
+–––––-+––––+

Analysis

The	SELECT	statement	retrieves	all	products	made	by	vendor	1002	and	vendor	1003.	A
comma-delimited	list	of	valid	values	follows	the	IN	operator,	and	you	must	enclose	the
entire	list	within	parentheses.

If	you	are	thinking	that	the	IN	operator	accomplishes	the	same	goal	as	OR,	you	are	right.
The	following	SQL	statement	accomplishes	the	exact	same	thing	as	the	previous	example:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	vend_id		=	1002	OR	vend_id	=	1003
ORDER	BY	prod_name;

Output
Click	here	to	view	code	image

+–––––-+––––+
|	prod_name						|	prod_price	|
+–––––-+––––+
Bird seed	10
Carrots	2.5
Detonator	13
Fuses	3.42
Oil can	8.99
Safe	50
Sling	4.49
TNT (1 stick)	2.5
TNT (5 sticks)	10
+–––––-+––––+

Why	use	the	IN	operator?	The	advantages	are

	When	you	are	working	with	long	lists	of	valid	options,	the	IN	operator	syntax	is	far
cleaner	and	easier	to	read.

	The	order	of	evaluation	is	easier	to	manage	when	you	use	IN	(as	there	are	fewer

operators	used).

	IN	operators	almost	always	execute	more	quickly	than	lists	of	OR	operators
(although	you	won’t	see	any	performance	difference	with	very	short	lists	like	the
ones	used	here).

	The	biggest	advantage	of	IN	is	that	the	IN	operator	can	contain	another	SELECT
statement,	enabling	you	to	build	highly	dynamic	WHERE	clauses.	You’ll	look	at	this
in	detail	in	Lesson	14,	“Working	with	Subqueries.”

IN

A	keyword	used	in	a	WHERE	clause	to	specify	a	list	of	values	to	be	matched	using
an	OR	comparison.

Using	the	 	Operator
The	WHERE	clause’s	NOT	operator	has	one	function	and	one	function	only—NOT	negates
whatever	condition	comes	next.

NOT

A	keyword	used	in	a	WHERE	clause	to	negate	a	condition.

The	following	example	demonstrates	the	use	of	NOT.	To	list	the	products	made	by	all
vendors	except	vendors	1002	and	1003,	you	can	use	the	following:

Input
Click	here	to	view	code	image

SELECT	prod_name,	prod_price
FROM	products
WHERE	vend_id	NOT	IN	(1002,1003)
ORDER	BY	prod_name;

Output
+––––—+––––+
|	prod_name				|	prod_price	|
+––––—+––––+
.5 ton anvil	5.99
1 ton anvil	9.99
2 ton anvil	14.99
JetPack 1000	35
JetPack 2000	55
+––––—+––––+

Analysis

The	NOT	here	negates	the	condition	that	follows	it;	so	instead	of	matching	vend_id	to
1002	or	1003,	Oracle	matches	vend_id	to	anything	that	is	not	1002	or	1003.

So	why	use	NOT?	Well,	for	simple	WHERE	clauses,	really	no	advantage	exists	to	using

NOT.	NOT	is	useful	in	more	complex	clauses.	For	example,	using	NOT	in	conjunction	with
an	IN	operator	makes	it	simple	to	find	all	rows	that	do	not	match	a	list	of	criteria.

Summary
This	lesson	picked	up	where	the	last	lesson	left	off	and	taught	you	how	to	combine
WHERE	clauses	with	the	AND	and	OR	operators.	You	also	learned	how	to	explicitly
manage	the	order	of	evaluation,	and	how	to	use	the	IN	and	NOT	operators.

Lesson	8.	Using	Wildcard	Filtering

In	this	lesson,	you’ll	learn	what	wildcards	are,	how	to	use	them,	and	how	to	perform
wildcard	searches	using	the	LIKE	operator	for	sophisticated	filtering	of	retrieved	data.

Using	the	 	Operator
All	the	previous	operators	we	studied	filter	against	known	values.	Be	it	matching	one	or
more	values,	testing	for	greater-than	or	less-than	known	values,	or	checking	a	range	of
values,	the	common	denominator	is	that	the	values	used	in	the	filtering	are	known.	But
filtering	data	that	way	does	not	always	work.	For	example,	how	could	you	search	for	all
products	that	contained	the	text	anvil	within	the	product	name?	That	cannot	be	done	with
simple	comparison	operators;	that’s	a	job	for	wildcard	searching.	Using	wildcards,	you
can	create	search	patterns	that	can	be	compared	against	your	data.	In	this	example,	if	you
want	to	find	all	products	that	contain	the	words	anvil,	you	could	construct	a	wildcard
search	pattern	enabling	you	to	find	that	anvil	text	anywhere	within	a	product	name.

Wildcards

Special	characters	used	to	match	parts	of	a	value.

Search	pattern

A	search	condition	made	up	of	literal	text,	wildcard	characters,	or	any	combination
of	the	two.

The	wildcards	themselves	are	actually	characters	that	have	special	meanings	within	SQL
WHERE	clauses,	and	SQL	supports	several	wildcard	types.

To	use	wildcards	in	search	clauses,	you	must	use	the	LIKE	operator.	LIKE	instructs
Oracle	to	compare	the	following	search	pattern	using	a	wildcard	match	rather	than	a
straight	equality	match.

Note:	Predicates

When	is	an	operator	not	an	operator?	When	it	is	a	predicate.	Technically,	LIKE	is	a
predicate,	not	an	operator.	The	end	result	is	the	same;	just	be	aware	of	this	term	in
case	you	run	across	it	in	the	Oracle	PL/SQL	documentation.

Searching	with	the	Percent	Sign	()	Wildcard
The	most	frequently	used	wildcard	is	the	percent	sign	(%).	In	a	search	string,	%	means
match	any	number	of	occurrences	of	any	character.	For	example,	to	find	all	products	that
start	with	the	word	jet,	you	can	issue	the	following	SELECT	statement:

Input

SELECT	prod_id,	prod_name
FROM	products
WHERE	prod_name	LIKE	‘Jet%’;

Output
+–––+––––—+
|	prod_id	|	prod_name				|
+–––+––––—+
|	JP1000		|	JetPack	1000	|
|	JP2000		|	JetPack	2000	|
+–––+––––—+

Analysis

This	example	uses	a	search	pattern	of	'Jet%'.	When	this	clause	is	evaluated,	any	value
that	starts	with	Jet	is	retrieved.	The	%	tells	Oracle	to	accept	any	characters	after	the	word
Jet,	regardless	of	how	many	characters	there	are.

Note:	Case-Sensitivity

As	noted	in	Lesson	6,	“Filtering	Data,”	depending	on	how	Oracle	is	configured,
searches	might	be	case	sensitive,	in	which	case	'jet%'	would	not	match
JetPack	1000.

You	can	use	wildcards	anywhere	in	the	search	pattern,	and	use	multiple	wildcards	as	well.
The	following	example	uses	two	wildcards,	one	at	either	end	of	the	pattern:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_name
FROM	products
WHERE	prod_name	LIKE	‘%anvil%’;

Output
+–––+––––—+
|	prod_id	|	prod_name				|
+–––+––––—+
ANV01	.5 ton anvil
ANV02	1 ton anvil
ANV03	2 ton anvil
+–––+––––—+

Analysis

The	search	pattern	'%anvil%'	means	match	any	value	that	contains	the	text	anvil
anywhere	within	it,	regardless	of	any	characters	before	or	after	that	text.

You	can	also	use	wildcards	in	the	middle	of	a	search	pattern,	although	that	rarely	tends	to
be	useful.

It	is	important	to	note	that,	in	addition	to	matching	one	or	more	characters,	%	also	matches
zero	characters.	%	represents	zero,	one,	or	more	characters	at	the	specified	location	in	the
search	pattern.

Note:	Watch	for	Trailing	Spaces

Trailing	spaces	can	interfere	with	wildcard	matching.	For	example,	the	clause
WHERE	prod_name	LIKE	'%anvil'	might	not	match	rows	if	there	were
additional	characters	after	the	final	l.	One	simple	solution	to	this	problem	is	to
always	append	a	final	%	to	the	search	pattern.	A	better	solution	is	to	trim	the	spaces
using	functions,	discussed	in	Lesson	11,	“Using	Data	Manipulation	Functions.”

Caution:	Watch	for	

Although	it	might	seem	that	the	%	wildcard	matches	anything,	there	is	one
exception:	NULL.	Not	even	the	clause	WHERE	prod_name	LIKE	'%'	will
match	a	row	with	the	value	NULL	as	the	product	name.

Tip:	Searching	for	

Here’s	a	fun	question.	How	would	you	create	a	search	pattern	to	look	for	the	text	@
itself	(instead	of	@	matching	multiple	characters)?	The	answer	is	to	use	two	@’s,	as
in	@@.	This	is	known	as	escaping.

Searching	with	the	Underscore	(_)	Wildcard
Another	useful	wildcard	is	the	underscore	(_).	The	underscore	is	used	just	like	%,	but
instead	of	matching	multiple	characters,	the	underscore	matches	just	a	single	character.

Take	a	look	at	this	example:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_name
FROM	products
WHERE	prod_name	LIKE	‘_	ton	anvil%’;

Output
+–––+––––-+
|	prod_id	|	prod_name			|
+–––+––––-+
|	ANV02			|	1	ton	anvil	|
|	ANV03			|	2	ton	anvil	|
+–––+––––-+

Analysis

The	search	pattern	used	in	this	WHERE	clause	specifies	a	wildcard	followed	by	literal	text.
The	results	shown	are	the	only	rows	that	match	the	search	pattern:	The	underscore
matches	1	in	the	first	row	and	2	in	the	second	row.	The	.5	ton	anvil	product	did	not
match	because	the	search	pattern	matched	a	single	character,	not	two.	The	search	pattern
also	ends	with	a	wildcard,	just	to	be	safe	(see	the	earlier	“Watch	for	Trailing	Spaces”

note).

By	contrast,	the	following	SELECT	statement	uses	the	%	wildcard	and	returns	three
matching	products:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_name
FROM	products
WHERE	prod_name	LIKE	‘%	ton	anvil%’;

Output
+–––+––––—+
|	prod_id	|	prod_name				|
+–––+––––—+
ANV01	.5 ton anvil
ANV02	1 ton anvil
ANV03	2 ton anvil
+–––+––––—+

Unlike	%,	which	can	match	zero	characters,	_	always	matches	one	character—no	more
and	no	less.

Tips	for	Using	Wildcards
As	you	can	see,	Oracle’s	wildcards	are	extremely	powerful.	But	that	power	comes	with	a
price:	Wildcard	searches	typically	take	far	longer	to	process	than	any	other	search	types
discussed	previously.	Here	are	some	tips	to	keep	in	mind	when	using	wildcards:

	Don’t	overuse	wildcards.	If	another	search	operator	will	do,	use	it	instead.

	When	you	do	use	wildcards,	try	to	not	use	them	at	the	beginning	of	the	search
pattern	unless	absolutely	necessary.	Search	patterns	that	begin	with	wildcards	are	the
slowest	to	process.

	Pay	careful	attention	to	the	placement	of	the	wildcard	symbols.	If	they	are
misplaced,	you	might	not	return	the	data	you	intended.

Having	said	that,	wildcards	are	an	important	and	useful	search	tool	that	you	will	use
frequently.

Summary
In	this	lesson,	you	learned	what	wildcards	are	and	how	to	use	SQL	wildcards	in	your
WHERE	clauses.	You	also	learned	that	you	should	use	wildcards	carefully	and	never
overuse	them.

Lesson	9.	Searching	Using	Regular	Expressions

In	this	lesson,	you’ll	learn	how	to	use	regular	expressions	within	Oracle	PL/SQL	WHERE
clauses	for	greater	control	over	data	filtering.

Understanding	Regular	Expressions
The	filtering	examples	in	the	previous	two	lessons	enabled	you	to	locate	data	using
matches,	comparisons,	and	wildcard	operators.	For	basic	filtering	(and	even	some	not-so-
basic	filtering),	this	might	be	enough.	But	as	the	complexity	of	filtering	conditions	grows,
so	does	the	complexity	of	the	WHERE	clauses	themselves.

And	this	is	where	regular	expressions	become	useful.	Regular	expressions	are	part	of	a
special	language	used	to	match	text.	If	you	needed	to	extract	phone	numbers	from	a	text
file,	you	might	use	a	regular	expression.	If	you	needed	to	locate	all	files	with	digits	in	the
middle	of	their	names,	you	might	use	a	regular	expression.	If	you	wanted	to	find	all
repeated	words	in	a	block	of	text,	you	might	use	a	regular	expression.	And	if	you	wanted
to	replace	all	URLs	in	a	page	with	actual	HTML	links	to	those	same	URLs,	yes,	you	might
use	a	regular	expression	(or	two,	for	this	last	example).

Regular	expressions	are	supported	in	all	sorts	of	programming	languages,	text	editors,
operating	systems,	and	more.	Savvy	programmers	and	network	managers	have	long
regarded	regular	expressions	as	a	vital	component	of	their	technical	toolboxes.

Regular	expressions	are	created	using	the	regular	expression	language,	a	specialized
language	designed	to	do	everything	that	was	just	discussed	and	much	more.	Like	any
language,	regular	expressions	have	a	special	syntax	and	instructions	that	you	must	learn.

Note:	To	Learn	More

Full	coverage	of	regular	expressions	is	beyond	the	scope	of	this	lesson.	Although
the	basics	are	covered	here,	for	a	more	thorough	introduction	to	regular
expressions,	you	might	want	to	obtain	a	copy	of	my	Sams	Teach	Yourself	Regular
Expressions	in	10	Minutes	(ISBN	0672325667).

Using	Oracle	PL/SQL	Regular	Expressions
So	what	does	this	have	to	do	with	Oracle?	As	already	explained,	all	regular	expressions	do
is	match	text,	comparing	a	pattern	(the	regular	expression)	with	a	string	of	text.	PL/SQL
provides	rather	sophisticated	support	for	regular	expressions	that	you	can	use	in	WHERE
clauses,	allowing	you	to	specify	regular	expressions	that	filter	data	retrieved	using
SELECT.

Note:	Not	Just	in	 	Clauses

PL/SQL	provides	four	functions	with	which	to	access	regular	expressions.	In	this
lesson,	we	focus	only	on	using	regular	expressions	to	filter	data,	and	so	we	only	use
the	REGEXP_LIKE()	function,	and	we	do	not	use	REGEXP_REPLACE()	(used
to	replace	characters	in	a	string),	or	REGEXP_INSTR()	and
REGEXP_SUBSTR()	(both	used	to	perform	searches	for	substrings	within	strings).
The	reason	I	point	this	out	is	so	that	you	are	aware	that	this	additional	functionality
exists,	because	the	regular	expressions	examples	you’ll	learn	while	using
REGEXP_LIKE()	in	this	lesson	also	apply	to	those	other	functions.

This	will	all	become	much	clearer	with	some	examples.

Basic	Character	Matching
We’ll	start	with	a	simple	example.	The	following	statement	retrieves	all	rows	where
column	prod_name	contains	the	text	1000:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘1000’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+
|	JetPack	1000	|
+––––—+

Analysis

This	statement	looks	much	like	the	ones	that	used	LIKE	(in	Lesson	8,	“Using	Wildcard
Filtering”),	except	that	the	LIKE	has	been	replaced	with	a	REGEXP_LIKE()	function
call.	This	tells	Oracle	to	treat	what	follows	as	a	regular	expression	(one	that	just	matches
the	literal	text	1000).

Note:	That’s	an	Odd	 	Clause

Before	going	further,	let’s	take	another	look	at	the	WHERE	clause	we	just	used.
Every	WHERE	clause	you’ve	seen	thus	far	required	that	you	pass	it	a	column	name
and	a	value,	as	well	as	an	operator	(=,	or	LIKE,	for	example).	When	Oracle
processes	the	WHERE	clauses,	the	result	is	either	true,	in	which	case	the	row	is
retrieved,	or	false,	in	which	case	it	is	not.	WHERE
REGEXP_LIKE(prod_name,	'1000')	is	different;	it’s	a	function	that	takes
parameters.	So	what	is	actually	being	checked?	The	answer	is	that
REGEXP_LIKE()	is	indeed	returning	true	or	false,	and	when	true	(a	match
is	found),	that	row	matches	the	WHERE	clause	and	is	returned.

So,	why	bother	using	a	regular	expression?	In	the	example	just	used,	regular	expressions
really	add	no	value	(and	probably	hurt	performance),	but	consider	this	next	example:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,		’.000’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+
|	JetPack	1000	|
|	JetPack	2000	|
+––––—+

Analysis

Here	the	regular	expression	.000	was	used.	.	is	a	special	character	in	the	regular
expression	language.	It	means	match	any	single	character,	and	so	both	1000	and	2000
matched	and	were	returned.

Of	course,	this	particular	example	could	also	have	been	accomplished	using	LIKE	and
wildcards	(as	discussed	in	Lesson	8).

Note:	 	Versus	

There	is	one	very	important	difference	between	LIKE	and	REGEXP.	Look	at	these
two	statements:

SELECT	prod_name
FROM	products
WHERE	prod_name	LIKE	‘1000’
ORDER	BY	prod_name;

and
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘1000’)
ORDER	BY	prod_name;

If	you	were	to	try	them	both,	you	would	discover	that	the	first	returns	no	data	and
the	second	returns	one	row.	Why	is	this?

As	shown	in	Lesson	8,	LIKE	matches	an	entire	column.	If	the	text	to	be	matched
existed	in	the	middle	of	a	column	value,	LIKE	would	not	find	it	and	the	row	would
not	be	returned	(unless	wildcard	characters	were	used).	REGEXP_LIKE(),	on	the
other	hand,	looks	for	matches	within	column	values,	and	so	if	the	text	to	be
matched	existed	in	the	middle	of	a	column	value,	REGEXP_LIKE()	would	find	it
and	the	row	would	be	returned.	This	is	a	very	important	distinction.

So	can	REGEXP_LIKE()	be	used	to	match	entire	column	values	(so	that	it
functions	like	LIKE)?	Actually,	yes,	using	the	^	and	$	anchors,	as	will	be
explained	later	in	this	lesson.

Tip:	Matches	Are	Case	Sensitive

Regular	expression	matching	in	Oracle	is	case	sensitive.

Performing	 	Matches
To	search	for	one	of	two	strings	(either	one	or	the	other),	use	|	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘1000|2000’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+

|	JetPack	1000	|
|	JetPack	2000	|
+––––—+

Analysis

Here	the	regular	expression	1000|2000	was	used.	|	is	the	regular	expression	OR
operator.	It	means	match	one	or	the	other,	and	so	both	1000	and	2000	matched	and	were
returned.

Using	|	is	functionally	similar	to	using	OR	statements	in	SELECT	statements,	with
multiple	OR	conditions	being	consolidated	into	a	single	regular	expression.

Tip:	More	Than	Two	 	Conditions

More	than	two	OR	conditions	may	be	specified.	For	example,
'1000|2000|3000'	would	match	1000	or	2000	or	3000.

Matching	One	of	Several	Characters
.	matches	any	single	character.	But	what	if	you	wanted	to	match	only	specific	characters?
You	can	do	this	by	specifying	a	set	of	characters	enclosed	within	[and],	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘[123]	ton’)
ORDER	BY	prod_name;

Output
+––––-+
|	prod_name			|
+––––-+
|	1	ton	anvil	|
|	2	ton	anvil	|
+––––-+

Analysis

Here	the	regular	expression	[123]	ton	was	used.	[123]	defines	a	set	of	characters,
and	here	it	means	match	1	or	2	or	3,	so	both	1	ton	and	2	ton	matched	and	were
returned	(there	was	no	3	ton).

As	you	have	just	seen,	[]	is	another	form	of	OR	statement.	In	fact,	the	regular	expression
[123]	Ton	is	shorthand	for	[1|2|3]	ton,	which	also	would	have	worked.	But	the
[]	characters	are	needed	to	define	what	the	OR	statement	is	looking	for.	To	better
understand	this,	look	at	the	next	example:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘1|2|3	ton’)
ORDER	BY	prod_name;

Output
+–––––+
|	prod_name					|
+–––––+
|	1	ton	anvil			|
|	2	ton	anvil			|
|	JetPack	1000		|
|	JetPack	2000		|
|	TNT	(1	stick)	|
+–––––+

Analysis

Well,	that	did	not	work.	The	two	required	rows	were	retrieved,	but	so	were	three	others.
This	happened	because	Oracle	assumed	that	you	meant	‘1’	or	‘2’	or	‘3	ton’,	and	so	any
rows	with	product	names	containing	1	or	2	were	also	matched.	The	|	character	applies	to
the	entire	string	unless	it	is	enclosed	with	a	set.

Sets	of	characters	can	also	be	negated.	That	is,	they’ll	match	anything	but	the	specified
characters.	To	negate	a	character	set,	place	a	^	at	the	start	of	the	set.	So,	whereas	[123]
matches	characters	1,	2,	or	3,	[^123]	matches	anything	but	those	characters.	Here’s	an
example:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘[^123]	ton’)
ORDER	BY	prod_name;

Output
+–––––+
|	prod_name					|
+–––––+
|	.5	ton	anvil		|
+–––––+

Analysis

[^123]	means	match	anything	other	than	the	characters	1,	2,	and	3,	and	so	[^123]
ton	matched	the	only	other	anvil.

Matching	Ranges
Sets	can	be	used	to	define	one	or	more	characters	to	be	matched.	For	example,	the
following	will	match	digits	0	through	9:

[0123456789]

To	simplify	this	type	of	set,	-	can	be	used	to	define	a	range.	The	following	is	functionally
identical	to	the	list	of	digits	just	shown:

[0-9]

Ranges	are	not	limited	to	complete	sets—[1-3]	and	[6-9]	are	valid	ranges,	too.	In
addition,	ranges	need	not	be	numeric,	and	so	[a-z]	will	match	any	alphabetical
character.

Here	is	an	example:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘[1-5]	ton’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+
|	.5	ton	anvil	|
|	1	ton	anvil		|
|	2	ton	anvil		|
+––––—+

Analysis

Here	the	regular	expression	[1-5]	ton	was	used.	[1-5]	defines	a	range,	and	so	this
expression	means	match	1	through	5,	and	so	three	matches	were	returned.	.5	ton	was
returned	because	5	ton	matched	(without	the	.	character).

Matching	Special	Characters
The	regular	expression	language	is	made	up	of	special	characters	that	have	specific
meanings.	You’ve	already	seen	.,	[],	|,	and	-,	and	there	are	others,	too.	This	begs	the
question:	If	you	needed	to	match	those	characters,	how	would	you	do	so?	For	example,	if
you	wanted	to	find	values	that	contain	the	.	character,	how	would	you	search	for	it?	Look
at	this	example:

Input
Click	here	to	view	code	image

SELECT	vend_name
FROM	vendors
WHERE	REGEXP_LIKE(vend_name,	‘.’)
ORDER	BY	vend_name;

Output
+–––––-+
|	vend_name						|

+–––––-+
|	ACME											|
|	Anvils	R	Us				|
|	Furball	Inc.			|
|	Jet	Set								|
|	Jouets	Et	Ours	|
|	LT	Supplies				|
+–––––-+

Analysis

That	did	not	work.	.	matches	any	character,	and	so	every	row	was	retrieved.

To	match	special	characters,	they	must	be	preceded	by	\.	So,	\-	means	find	–	and	\.
means	find	.:

Input
Click	here	to	view	code	image

SELECT	vend_name
FROM	vendors
WHERE	REGEXP_LIKE(vend_name,	‘.’)
ORDER	BY	vend_name;

Output
+––––—+
|	vend_name				|
+––––—+
|	Furball	Inc.	|
+––––—+

Analysis

That	worked.	\.	matches	.,	and	so	only	a	single	row	was	retrieved.	This	process	is
known	as	escaping	(you	saw	that	term	used	in	the	last	lesson,	too),	and	all	characters	that
have	special	significance	in	regular	expressions	must	be	escaped	this	way.	This	includes	.,
|,	[],	and	all	the	other	special	characters	used	thus	far.

Tip:	To	Match	\

To	match	the	backslash	character	itself	(\),	you	need	to	escape	it	and	use	\\.

Matching	Character	Classes
There	are	matches	that	you’ll	find	yourself	using	frequently,	such	as	digits,	or	all
alphabetical	characters,	or	all	alphanumerical	characters,	and	so	on.	To	make	working	with
these	easier,	you	can	use	predefined	character	sets	known	as	character	classes.	Table	9.1
lists	some	of	these	character	classes	and	what	they	mean.

TABLE	9.1	Character	Classes

Matching	Multiple	Instances
All	the	regular	expressions	used	thus	far	attempt	to	match	a	single	occurrence.	If	there	is	a
match,	the	row	is	retrieved,	and	if	not,	nothing	is	retrieved.	But	sometimes	you’ll	require
greater	control	over	the	number	of	matches.	For	example,	you	might	want	to	locate	all
numbers	regardless	of	how	many	digits	the	number	contains,	or	you	might	want	to	locate	a
word	but	also	be	able	to	accommodate	a	trailing	s	if	one	exists,	and	so	on.

This	can	be	accomplished	using	the	regular	expressions	repetition	metacharacters,	listed	in
Table	9.2.

TABLE	9.2	Repetition	Metacharacters

Following	are	some	examples:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘\(\d	sticks?\)’)
ORDER	BY	prod_name;

Output
+–––––-+
|	prod_name						|
+–––––-+
|	TNT	(1	stick)		|
|	TNT	(5	sticks)	|
+–––––-+

Analysis

Regular	expression	'\(\d	sticks?\)'	requires	some	explanation.	\(matches	(,	\d
matches	any	digit	(1	and	5	in	this	example),	sticks?	matches	stick	and	sticks	(the
?	after	the	s	makes	that	s	optional	because	?	matches	0	or	1	occurrence	of	whatever	it
follows),	and	\)	matches	the	closing).	Without	?,	it	would	have	been	very	difficult	to
match	both	stick	and	sticks.

Here’s	another	example.	This	time	we’ll	try	to	match	four	consecutive	digits:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘\d{4}’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+
|	JetPack	1000	|
|	JetPack	2000	|
+––––—+

Analysis

As	explained	previously,	\d	matches	any	digit.	{4}	requires	exactly	four	occurrences	of
whatever	it	follows	(any	digit),	and	so	\d{4}	matches	any	four	consecutive	digits.

It	is	worth	noting	that	when	you	use	regular	expressions,	there	is	almost	always	more	than
one	way	to	write	a	specific	expression.	The	previous	example	could	have	also	been	written
as	follows:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘[0-9][0-9][0-9][0-9]’)
ORDER	BY	prod_name;

Actually,	it	could	also	have	been	written	as:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘[0-9]{4}’)
ORDER	BY	prod_name;

Anchors
All	the	examples	thus	far	have	matched	text	anywhere	within	a	string.	To	match	text	at
specific	locations,	you	need	to	use	anchors,	as	listed	in	Table	9.3.

TABLE	9.3	Anchor	Metacharacters

For	example,	what	if	you	wanted	to	find	all	products	that	started	with	a	number	(including
numbers	starting	with	a	decimal	point)?	A	simple	search	for	[0-9\.]	(or	[\d\.])
would	not	work	because	it	would	find	matches	anywhere	within	the	text.	The	solution	is	to
use	the	^	anchor,	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	prod_name
FROM	products
WHERE	REGEXP_LIKE(prod_name,	‘^[0-9.]’)
ORDER	BY	prod_name;

Output
+––––—+
|	prod_name				|
+––––—+
|	.5	ton	anvil	|
|	1	ton	anvil		|
|	2	ton	anvil		|
+––––—+

Analysis

^	matches	the	start	of	a	string.	As	such,	^[0-9\.]	matches	.	or	any	digit	only	if	they
are	the	first	characters	within	a	string.	Without	the	^,	four	other	rows	would	have	been
retrieved,	too	(those	that	have	digits	in	the	middle).

Note:	The	Dual	Purpose	

^	has	two	uses.	Within	a	set	(defined	using	[and]),	it	is	used	to	negate	that	set.
Otherwise,	it	is	used	to	refer	to	the	starts	of	a	string.

Note:	Making	 	Behave	Like	

Earlier	in	this	lesson,	I	mentioned	that	LIKE	and	REGEXP_LIKE()	behaved
differently	in	that	LIKE	matched	an	entire	string	and	REGEXP_LIKE()	matched
substrings,	too.	Using	anchors,	REGEXP_LIKE()	can	be	made	to	behave	just	like
LIKE	by	simply	starting	each	expression	with	^	and	ending	it	with	$.

Summary
In	this	lesson,	you	learned	the	basics	of	regular	expressions,	and	how	to	use	them	in
Oracle	PL/SQL	SELECT	statements	via	the	REGEXP_LIKE()	function.

Lesson	10.	Creating	Calculated	Fields

In	this	lesson,	you	will	learn	what	calculated	fields	are,	how	to	create	them,	and	how	to
use	aliases	to	refer	to	them	from	within	your	application.

Understanding	Calculated	Fields
Data	stored	within	a	database’s	tables	is	often	not	available	in	the	exact	format	needed	by
your	applications.	Here	are	some	examples:

	You	need	to	display	a	field	containing	the	name	of	a	company	along	with	the
company’s	location,	but	that	information	is	stored	in	separated	table	columns.

	City,	state,	and	ZIP	Code	are	stored	in	separate	columns	(as	they	should	be),	but
your	mailing	label	printing	program	needs	them	retrieved	as	one	correctly	formatted
field.

	Column	data	is	in	mixed	upper-	and	lowercase,	and	your	report	needs	all	data
presented	in	uppercase.

	An	order	items	table	stores	item	price	and	quantity	but	not	the	expanded	price	(price
multiplied	by	quantity)	of	each	item.	To	print	invoices,	you	need	that	expanded
price.

	You	need	total,	averages,	or	other	calculations	based	on	table	data.

In	each	of	these	examples,	the	data	stored	in	the	table	is	not	exactly	what	your	application
needs.	Rather	than	retrieve	the	data	as	it	is	and	then	reformat	it	within	your	client
application	or	report,	what	you	really	want	is	to	retrieve	converted,	calculated,	or
reformatted	data	directly	from	the	database.

This	is	where	calculated	fields	come	in.	Unlike	all	the	columns	we	retrieved	in	the	lessons
thus	far,	calculated	fields	don’t	actually	exist	in	database	tables.	Rather,	a	calculated	field
is	created	on	the	fly	in	a	SQL	SELECT	statement.

Field

Essentially	means	the	same	thing	as	column	and	often	is	used	interchangeably,
although	database	columns	are	typically	called	columns	and	the	term	fields	is
normally	used	in	conjunction	with	calculated	fields.

It	is	important	to	note	that	only	the	database	knows	which	columns	in	a	SELECT
statement	are	actual	table	columns	and	which	are	calculated	fields.	From	the	perspective
of	a	client	(for	example,	your	application),	a	calculated	field’s	data	is	returned	in	the	same
way	as	data	from	any	other	column.

Tip:	Client	Versus	Server	Formatting

Many	of	the	conversions	and	reformatting	that	can	be	performed	in	SQL	statements
can	also	be	performed	directly	in	your	client	application.	However,	as	a	rule,	it	is
far	quicker	to	perform	these	operations	on	the	database	server	than	it	is	to	perform
them	within	the	client	because	DBMSs	are	built	to	perform	this	type	of	processing
quickly	and	efficiently.

Concatenating	Fields
To	demonstrate	working	with	calculated	fields,	let’s	start	with	a	simple	example—creating
a	title	made	up	of	two	columns.

The	vendors	table	contains	vendor	name	and	address	information.	Imagine	you	are
generating	a	vendor	report	and	need	to	list	the	vendor	location	as	part	of	the	vendor	name
in	the	format	name	(location).

The	report	wants	a	single	value,	and	the	data	in	the	table	is	stored	in	two	columns:
vend_name	and	vend_country.	In	addition,	you	need	to	surround	vend_country
with	parentheses,	and	those	are	definitely	not	stored	in	the	database	table.	The	SELECT
statement	that	returns	the	vendor	names	and	locations	is	simple	enough,	but	how	would
you	create	this	combined	value?

Concatenate

Joining	values	together	(by	appending	them	to	each	other)	to	form	a	single	long
value.

The	solution	is	to	concatenate	the	two	columns.	In	Oracle	SELECT	statements,	you	can
concatenate	columns	using	the	||	operator.

Tip:	No	+	for	Concatenation

Many	DBMSs	allow	you	to	use	+	to	concatenate	strings.	Oracle	does	not;	you	must
use	||	for	concatenation.

Input
Click	here	to	view	code	image

SELECT	vend_name	||	‘,	(‘	||	vend_country	||	‘)’
FROM	vendors
ORDER	BY	vend_name;

Output
Click	here	to	view	code	image

+––––––––––––––––––-+
|	VEND_NAME||’,(‘||VEND_COUNTRY||’)’																				|

+––––––––––––––––––-+
|	ACME																				,	(USA)|
|	Anvils	R	Us													,	(USA)|
|	Furball	Inc.												,	(USA)|
|	Jet	Set																	,	(England)|
|	Jouets	Et	Ours										,	(France)|
|	LT	Supplies													,	(USA)|
+––––––––––––––––––-+

Analysis

||	concatenates	strings,	appending	them	to	each	other	to	create	one	bigger	string.	The
previous	SELECT	statements	concatenate	four	elements:

	The	name	stored	in	the	vend_name	column

	A	string	containing	a	space	and	an	open	parenthesis

	The	state	stored	in	the	vend_country	column

	A	string	containing	the	close	parenthesis

As	you	can	see	in	the	output	shown	previously,	the	SELECT	statement	returns	a	single
column	(a	calculated	field)	containing	all	four	of	these	elements	as	one	unit.	However,	the
output	contains	lots	of	extraneous	spacing.	What	we	really	want	is	something	like	ACME,
(USA).

Back	in	Lesson	8,	“Using	Wildcard	Filtering,”	I	mentioned	the	need	to	trim	data	to
remove	any	trailing	spaces.	This	can	be	done	using	the	PL/SQL	RTrim()	function,	as
follows:

Input
Click	here	to	view	code	image

SELECT	RTrim(vend_name)	||	‘,	(‘	||	RTrim(vend_country)	||	‘)’
FROM	vendors
ORDER	BY	vend_name;

Output
Click	here	to	view	code	image

+––––––––––––––––––-+
|	RTRIM(VEND_NAME)||’,(‘||RTRIM(VEND_COUNTRY)||’)’						|
+––––––––––––––––––-+
|	ACME,	(USA)																																											|
|	Anvils	R	Us,	(USA)																																				|
|	Furball	Inc.,	(USA)																																			|
|	Jet	Set,	(England)																																				|
|	Jouets	Et	Ours,	(France)																														|
|	LT	Supplies,	(USA)																																				|
+––––––––––––––––––-+

Analysis

The	RTrim()	function	trims	all	spaces	from	the	right	of	a	value.	By	using	RTrim(),	the

individual	columns	are	all	trimmed	properly.

The	 	Functions

In	addition	to	RTrim()	(which,	as	just	shown,	trims	the	right	side	of	a	string),
PL/SQL	supports	the	use	of	LTrim()	(which	trims	the	left	side	of	a	string),	and
Trim()	(which	trims	both	the	right	and	left).

Using	Aliases
The	SELECT	statement	used	to	concatenate	the	address	field	works	well,	as	shown	in	the
previous	output.	But	what	is	the	name	of	this	new	calculated	column?	Well,	the	truth	is,	it
has	no	name;	it	is	simply	a	value.	Although	this	can	be	fine	if	you	are	just	looking	at	the
results	in	a	SQL	query	tool,	an	unnamed	column	cannot	be	used	within	a	client	application
because	the	client	has	no	way	to	refer	to	that	column.

To	solve	this	problem,	SQL	supports	column	aliases.	An	alias	is	just	that—an	alternative
name	for	a	field	or	value.	Aliases	are	assigned	with	the	AS	keyword.	Take	a	look	at	the
following	SELECT	statement:

Input
Click	here	to	view	code	image

SELECT	RTrim(vend_name)	||	‘,	(‘	||	RTrim(vend_country)	||	‘)’	AS	vend_title
FROM	vendors
ORDER	BY	vend_name;

Output
Click	here	to	view	code	image

+––––––––––––––––––-+
|	VEND_TITLE																																												|
+––––––––––––––––––-+
|	ACME,	(USA)																																											|
|	Anvils	R	Us,	(USA)																																				|
|	Furball	Inc.,	(USA)																																			|
|	Jet	Set,	(England)																																				|
|	Jouets	Et	Ours,	(France)																														|
|	LT	Supplies,	(USA)																																				|
+––––––––––––––––––-+

Analysis

The	SELECT	statement	itself	is	the	same	as	the	one	used	in	the	previous	code	snippet,
except	that	here	the	calculated	field	is	followed	by	the	text	AS	vend_title.	This
instructs	SQL	to	create	a	calculated	field	named	vend_title	containing	the	results	of
the	specified	calculation.	As	you	can	see	in	the	output,	the	results	are	the	same	as	before,
but	the	column	is	now	named	vend_title	and	any	client	application	can	refer	to	this
column	by	name,	just	as	it	would	to	any	actual	table	column.

Tip:	Other	Uses	for	Aliases

Aliases	have	other	uses,	too.	Some	common	uses	include	renaming	a	column	if	the
real	table	column	name	contains	illegal	characters	(for	example,	spaces)	and
expanding	column	names	if	the	original	names	are	either	ambiguous	or	easily
misread.

Note:	Derived	Columns

Aliases	are	also	sometimes	referred	to	as	derived	columns,	so	regardless	of	the	term
you	run	across,	they	mean	the	same	thing.

Performing	Mathematical	Calculations
Another	frequent	use	for	calculated	fields	is	performing	mathematical	calculations	on
retrieved	data.	Let’s	take	a	look	at	an	example.	The	orders	table	contains	all	orders
received,	and	the	orderitems	table	contains	the	individual	items	in	each	order.	The
following	SQL	statement	retrieves	all	the	items	in	order	number	20005:

Input
Click	here	to	view	code	image

SELECT	prod_id,	quantity,	item_price
FROM	orderitems
WHERE	order_num	=	20005;

Output
Click	here	to	view	code	image

+–––+–––-+––––+
|	prod_id	|	quantity	|	item_price	|
+–––+–––-+––––+
ANV01	10	5.99
ANV02	3	9.99
TNT2	5	10
FB	1	10
+–––+–––-+––––+

The	item_price	column	contains	the	per	unit	price	for	each	item	in	an	order.	To
expand	the	item	price	(item	price	multiplied	by	quantity	ordered),	you	simply	do	the
following:

Input
Click	here	to	view	code	image

SELECT	prod_id,
							quantity,
							item_price,
							quantity*item_price	AS	expanded_price
FROM	orderitems

WHERE	order_num	=	20005;

Output
Click	here	to	view	code	image

+–––+–––-+––––+–––––-+
|	prod_id	|	quantity	|	item_price	|	expanded_price	|
+–––+–––-+––––+–––––-+
ANV01	10	5.99	59.9
ANV02	3	9.99	29.97
TNT2	5	10	50
FB	1	10	10
+–––+–––-+––––+–––––-+

Analysis

The	expanded_price	column	shown	in	the	previous	output	is	a	calculated	field;	the
calculation	is	simply	quantity*item_price.	The	client	application	can	now	use	this
new	calculated	column	just	as	it	would	any	other	column.

Oracle	supports	the	basic	mathematical	operators	listed	in	Table	10.1.	In	addition,
parentheses	can	be	used	to	establish	order	of	precedence.	Refer	to	Lesson	7,	“Advanced
Data	Filtering,”	for	an	explanation	of	precedence.

TABLE	10.1	Oracle	Mathematical	Operators

Tip:	How	to	Test	Calculations

SELECT	provides	a	great	way	to	test	and	experiment	with	functions	and
calculations.	Although	SELECT	is	usually	used	to	retrieve	data	from	a	table,	the
FROM	clause	can	be	omitted	by	replacing	it	with	a	special	table	named	dual.	For
example,	SELECT	3	*	2	FROM	dual;	would	return	6,	and	SELECT
Trim('			abc			')	FROM	dual;	would	return	abc.	If	that	dual	table
looks	vaguely	familiar,	it’s	because	we	used	it	in	our	first	PL/SQL	statement	back	in
Lesson	3,	“Working	with	Oracle.”

Summary
In	this	lesson,	you	learned	what	calculated	fields	are	and	how	to	create	them.	We	used
examples	demonstrating	the	use	of	calculated	fields	for	both	string	concatenation	and
mathematical	operations.	In	addition,	you	learned	how	to	create	and	use	aliases	so	your
application	can	refer	to	calculated	fields.

Lesson	11.	Using	Data	Manipulation	Functions

In	this	lesson,	you’ll	learn	what	functions	are,	what	types	of	functions	Oracle	supports,
and	how	to	use	these	functions.

Understanding	Functions
Like	almost	any	other	computer	language,	SQL	supports	the	use	of	functions	to
manipulate	data.	Functions	are	operations	that	are	usually	performed	on	data,	usually	to
facilitate	conversion	and	manipulation.

An	example	of	a	function	is	the	RTrim()	that	we	used	in	the	last	lesson	to	trim	any
spaces	from	the	end	of	a	string.

Note:	Functions	Are	Less	Portable	Than	SQL

Code	that	runs	on	multiple	systems	is	said	to	be	portable.	Most	SQL	statements	are
relatively	portable,	and	when	differences	between	SQL	implementations	do	occur,
they	are	usually	not	that	difficult	to	deal	with.	Functions,	on	the	other	hand,	tend	to
be	far	less	portable.	Just	about	every	major	DBMS	supports	functions	that	others
don’t,	and	sometimes	the	differences	are	significant.

With	code	portability	in	mind,	many	SQL	programmers	opt	not	to	use	any
implementation-specific	features.	Although	this	is	a	somewhat	noble	and	idealistic
view,	it	is	not	always	in	the	best	interests	of	application	performance.	If	you	opt	not
to	use	these	functions,	you	make	your	application	code	work	harder.	It	must	use
other	methods	to	do	what	the	DBMS	could	have	done	more	efficiently.

If	you	do	decide	to	use	functions,	make	sure	you	comment	your	code	well,	so	that
at	a	later	date,	you	(or	another	developer)	will	know	exactly	to	which	SQL
implementation	you	were	writing.	Code	commenting	was	introduced	back	in
Lesson	4,	“Retrieving	Data.”

Using	Functions
Most	SQL	implementations	support	the	following	types	of	functions:

	Text	functions	are	used	to	manipulate	strings	of	text	(for	example,	trimming	or
padding	values	and	converting	values	to	upper-	and	lowercase).

	Numeric	functions	are	used	to	perform	mathematical	operations	on	numeric	data
(for	example,	returning	absolute	numbers	and	performing	algebraic	calculations).

	Date	and	time	functions	are	used	to	manipulate	date	and	time	values	and	to	extract
specific	components	from	these	values	(for	example,	returning	differences	between
dates	and	checking	date	validity).

	System	functions	return	information	specific	to	the	DBMS	being	used	(for	example,
returning	user	login	information	or	checking	version	specifics).

Text	Manipulation	Functions
You’ve	already	seen	an	example	of	text-manipulation	functions	in	the	last	lesson—the
RTrim()	function	was	used	to	trim	white	space	from	the	end	of	a	column	value.	Here	is
another	example,	this	time	using	the	Upper()	function:

Input
Click	here	to	view	code	image

SELECT	vend_name,	Upper(vend_name)	AS	vend_name_upcase
FROM	vendors
ORDER	BY	vend_name;

Output
Click	here	to	view	code	image

+–––––-+––––––+
|	vend_name						|	vend_name_upcase	|
+–––––-+––––––+
ACME	ACME
Anvils R Us	ANVILS R US
Furball Inc.	FURBALL INC.
Jet Set	JET SET
Jouets Et Ours	JOUETS ET OURS
LT Supplies	LT SUPPLIES
+–––––-+––––––+

Analysis

As	you	can	see,	Upper()	converts	text	to	uppercase,	and	so	in	this	example,	each	vendor
is	listed	twice,	first	exactly	as	stored	in	the	vendors	table,	and	then	converted	to
uppercase	as	column	vend_name_upcase.

Table	11.1	lists	some	commonly	used	text-manipulation	functions.

TABLE	11.1	Commonly	Used	Text-Manipulation	Functions

One	item	in	Table	11.1	requires	further	explanation.	SOUNDEX	is	an	algorithm	that
converts	any	string	of	text	into	an	alphanumeric	pattern	describing	the	phonetic
representation	of	that	text.	SOUNDEX	takes	into	account	similar	sounding	characters	and
syllables,	enabling	strings	to	be	compared	by	how	they	sound	rather	than	how	they	have

been	typed.	Although	SOUNDEX	is	not	a	SQL	concept,	Oracle	(like	many	other	DBMSs)
offers	SOUNDEX	support.
Here’s	an	example	using	the	Soundex()	function.	Customer	Coyote	Inc.	is	in	the
customers	table	and	has	a	contact	named	Y.	Lee.	But	what	if	that	were	a	typo,	and
the	contact	actually	was	supposed	to	have	been	Y.	Lie?	Obviously,	searching	by	the
correct	contact	name	would	return	no	data,	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
WHERE	cust_contact	=	‘Y.	Lie’;

Output
Click	here	to	view	code	image

+––––-+––––—+
|	cust_name			|	cust_contact	|
+––––-+––––—+

Now	try	the	same	search	using	the	Soundex()	function	to	match	all	contact	names	that
sound	similar	to	Y.	Lie:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
WHERE	Soundex(cust_contact)	=	Soundex(‘Y	Lie’);

Output
Click	here	to	view	code	image

+––––-+––––—+
|	cust_name			|	cust_contact	|
+––––-+––––—+
|	Coyote	Inc.	|	Y	Lee								|
+––––-+––––—+

Analysis

In	this	example,	the	WHERE	clause	uses	the	Soundex()	function	to	convert	both	the
cust_contact	column	value	and	the	search	string	to	their	SOUNDEX	values.	Because
Y.	Lee	and	Y.	Lie	sound	alike,	their	SOUNDEX	values	match,	and	so	the	WHERE
clause	correctly	filtered	the	desired	data.

Date	and	Time	Manipulation	Functions
Date	and	times	are	stored	in	tables	using	special	datatypes	using	special	internal	formats
so	they	may	be	sorted	or	filtered	quickly	and	efficiently,	as	well	as	to	save	physical	storage
space.

The	format	used	to	store	dates	and	times	is	usually	of	no	use	to	your	applications,	and	so
date	and	time	functions	are	almost	always	used	to	read,	expand,	and	manipulate	these
values.	Because	of	this,	date	and	time	manipulation	functions	are	some	of	the	most
important	functions	in	Oracle	PL/SQL.

Table	11.2	lists	some	commonly	used	date	and	time	manipulation	functions.

TABLE	11.2	Commonly	Used	Date	and	Time	Manipulation	Functions

Note:	The	All-Important	 	Function

If	you’ve	used	other	DBMSs,	you’re	probably	wondering	why	PL/SQL	has	so	few
date	and	time	functions.	Other	DBMSs	have	far	more,	including	shortcuts	for
extracting	specific	values	from	dates	and	times.	In	PL/SQL,	one	function	does	it	all
—the	all-important	Extract()	function—as	you	will	soon	see.

This	would	be	a	good	time	to	revisit	data	filtering	using	WHERE.	Thus	far	we	have	filtered
data	using	WHERE	clauses	that	compared	numbers	and	text,	but	frequently	data	needs	to	be
filtered	by	date.	Filtering	by	date	requires	some	extra	care,	and	the	use	of	special	PL/SQL
functions.

The	first	thing	to	keep	in	mind	is	the	date	formatting	can	get	tricky.	After	all,	what	date	is
2015-03-04?	Is	03	the	month	and	04	the	day,	or	vice	versa?	For	this	reason,	any	time
you	provide	a	date	to	Oracle,	you	must	explicitly	state	how	it	is	formatted.

Tip:	Always	Use	Four-Digit	Years

Oracle	uses	four-digit	years.	If	you	provide	a	two-digit	year,	Oracle	might	not	treat
it	as	you	would	expect.	As	such,	it	is	far	safer	to	always	use	a	full	four-digit	year	so
that	Oracle	does	not	have	to	make	any	assumptions	for	you.

As	such,	a	basic	date	comparison	should	be	simple	enough:

Input
Click	here	to	view	code	image

SELECT	cust_id,	order_num
FROM	orders

WHERE	order_date	=	TO_DATE(‘2015-02-01’,	‘yyyy-mm-dd’);

Output
+–––+–––—+
|	cust_id	|	order_num	|
+–––+–––—+
|			10001	|					20005	|
+–––+–––—+

Analysis

That	SELECT	statement	worked;	it	retrieved	a	single	order	record,	one	with	an
order_date	of	2015-02-01.	To	prevent	ambiguity,	the	To_Date()	function	was
passed	a	formatting	string	of	yyyy-mm-dd,	which	tells	Oracle	that	the	date	is	formatted
as	a	four-digit	year,	followed	by	a	hyphen,	followed	by	a	two-digit	month,	followed	by
another	hyphen,	and	then	a	two-digit	date.

Another	thing	to	keep	in	mind	is	that	our	order_date	field	is	indeed	a	date	field,	not	a
date	and	time	field.	I	did	this	to	simplify	things,	but	in	the	real	world,	order	may	indeed	be
saved	with	order	date	and	order	time.	Had	order_date	been	a	datetime	field,	things
would	have	gotten	a	bit	more	complicated.	Why?	Because	WHERE	order_date	=
TO_DATE('2015-02-01',	'yyyy-mm-dd’);	would	fail	if,	for	example,	the
stored	order_date	value	was	2015-02-01	11:30:05.	Even	though	a	row	with
that	date	is	present,	it	would	not	be	retrieved	because	the	WHERE	match	failed.

The	solution	in	this	case	would	be	to	instruct	Oracle	to	search	a	date	range,	like	this:

Input
Click	here	to	view	code	image

SELECT	cust_id,	order_num
FROM	orders
WHERE	order_date	>=	TO_DATE(‘2015-02-01’,	‘yyyy-mm-dd’)
			AND	order_date	<	TO_DATE(‘2015-02-02’,	‘yyyy-mm-dd’)

This	same	technique	can	be	used	to	search	for	date	ranges.	For	example,	what	if	you
wanted	to	retrieve	all	orders	placed	in	February	2015?	There	are	several	solutions,	one	of
which	is	similar	to	the	preceding:

Input
Click	here	to	view	code	image

SELECT	cust_id,	order_num
FROM	orders
WHERE	order_date	>=	TO_DATE(‘2015-02-01’,	‘yyyy-mm-dd’)
			AND	order_date	<	TO_DATE(‘2015-03-01’,	‘yyyy-mm-dd’);

Output
+–––+–––—+
|	cust_id	|	order_num	|
+–––+–––—+
|			10001	|					20005	|

|			10003	|					20006	|
|			10004	|					20007	|
+–––+–––—+

You	could	also	use	the	BETWEEN	operator,	discussed	in	Lesson	6,	“Filtering	Data.”

Input
Click	here	to	view	code	image

SELECT	cust_id,	order_num
FROM	orders
WHERE	order_date	BETWEEN	TO_DATE(‘2015-02-01’,	‘yyyy-mm-dd’)
			AND	TO_DATE(‘2015-02-28’,	‘yyyy-mm-dd’);

Analysis

Here	a	BETWEEN	operator	is	used	to	define	2015-02-01	and	2015-02-28	as	the
range	of	dates	to	match.

More	flexible	date	arithmetic	requires	the	ability	to	extract	specific	parts	of	a	date	or	time.
This	is	where	the	Extract()	function	comes	into	play.	As	its	name	suggests,
Extract()	extracts	parts	of	dates	and	times,	allowing	you	to	work	with	just	the	YEAR,
MONTH,	DAY,	HOUR,	MINUTE,	and	SECOND.

Here’s	another	solution	to	the	previous	problem	(one	that	won’t	require	you	to	figure	out
how	many	days	are	in	each	month,	or	worry	about	February	in	leap	years):

Input
Click	here	to	view	code	image

SELECT	cust_id,	order_num
FROM	orders
WHERE	Extract(Year	FROM	order_date)	=	2015
			AND	Extract(Month	FROM	order_date)	=	2

Output
+–––+–––—+
|	cust_id	|	order_num	|
+–––+–––—+
10001	20005
10003	20006
10004	20007
+–––+–––—+

Analysis

Extract(Year)	returns	the	year	from	a	date.	Similarly,	Extract(Month)	returns
the	month	from	a	date.	WHERE	Extract(Year	FROM	order_date)	=	2015
AND	Extract(Month	FROM	order_date)	=	2	thus	retrieves	all	rows	that	have
an	order_date	in	year	2015	and	in	month	2.

Numeric	Manipulation	Functions
Numeric	manipulation	functions	do	just	that—manipulate	numeric	data.	These	functions
tend	to	be	used	primarily	for	algebraic,	trigonometric,	or	geometric	calculations	and,
therefore,	are	not	as	frequently	used	as	string	or	date	and	time	manipulation	functions.

The	ironic	thing	is	that	of	all	the	functions	found	in	the	major	DBMSs,	the	numeric
functions	are	the	ones	that	are	most	uniform	and	consistent.	Table	11.3	lists	some	of	the
more	commonly	used	numeric	manipulation	functions.

TABLE	11.3	Commonly	Used	Numeric	Manipulation	Functions

Summary
In	this	lesson,	you	learned	how	to	use	SQL’s	data	manipulation	functions,	and	paid	special
attention	to	working	with	dates.

Lesson	12.	Summarizing	Data

In	this	lesson,	you	will	learn	what	the	SQL	aggregate	functions	are	and	how	to	use	them	to
summarize	table	data.

Using	Aggregate	Functions
It	is	often	necessary	to	summarize	data	without	actually	retrieving	it	all,	and	Oracle
provides	special	functions	for	this	purpose.	Using	these	functions,	Oracle	queries	are	often
used	to	retrieve	data	for	analysis	and	reporting	purposes.	Examples	of	this	type	of	retrieval
include	the	following:

	Determining	the	number	of	rows	in	a	table	(or	the	number	of	rows	that	meet	some
condition	or	contain	a	specific	value)

	Obtaining	the	sum	of	a	group	of	rows	in	a	table

	Finding	the	highest,	lowest,	and	average	values	in	a	table	column	(either	for	all	rows
or	for	specific	rows)

In	each	of	these	examples,	you	want	a	summary	of	the	data	in	a	table,	not	the	actual	data
itself.	Therefore,	returning	the	actual	table	data	would	be	a	waste	of	time	and	processing
resources	(not	to	mention	bandwidth).	To	repeat,	all	you	really	want	is	the	summary
information.

To	facilitate	this	type	of	retrieval,	Oracle	features	a	set	of	aggregate	functions,	some	of
which	are	listed	in	Table	12.1.	These	functions	enable	you	to	perform	all	the	types	of
retrieval	just	enumerated.

TABLE	12.1	SQL	Aggregate	Functions

Aggregate	Functions

Functions	that	operate	on	a	set	of	rows	to	calculate	and	return	a	single	value.

The	use	of	each	of	these	functions	is	explained	in	the	following	sections.

Note:	Standard	Deviation

A	series	of	standard	deviation	aggregate	functions	are	also	supported	by	Oracle,	but
are	not	covered	in	the	lessons.

The	 	Function
AVG()	is	used	to	return	the	average	value	of	a	specific	column	by	counting	both	the
number	of	rows	in	the	table	and	the	sum	of	their	values.	AVG()	can	be	used	to	return	the
average	value	of	all	columns	or	of	specific	columns	or	rows.

This	first	example	uses	AVG()	to	return	the	average	price	of	all	the	products	in	the
products	table:

Input
Click	here	to	view	code	image

SELECT	AVG(prod_price)	AS	avg_price
FROM	products;

Output
+––––+
|	avg_price		|
+––––+
|	16.1335714	|
+––––+

Analysis

The	preceding	SELECT	statement	returns	a	single	value,	avg_price,	that	contains	the
average	price	of	all	products	in	the	products	table.	avg_price	is	an	alias,	as
explained	in	Lesson	10,	“Creating	Calculated	Fields.”

AVG()	can	also	be	used	to	determine	the	average	value	of	specific	columns	or	rows.	The
following	example	returns	the	average	price	of	products	offered	by	a	specific	vendor:

Input
Click	here	to	view	code	image

SELECT	AVG(prod_price)	AS	avg_price
FROM	products
WHERE	vend_id	=	1003;

Output
+–––—+
|	avg_price		|
+––––+
|	13.2128571	|
+––––+

Analysis

This	SELECT	statement	differs	from	the	previous	one	only	in	that	this	one	contains	a
WHERE	clause.	The	WHERE	clause	filters	only	products	with	a	vend_id	of	1003,	and,
therefore,	the	value	returned	in	avg_price	is	the	average	of	just	that	vendor’s	products.

Caution:	Individual	Columns	Only

AVG()	may	only	be	used	to	determine	the	average	of	a	specific	numeric	column,
and	that	column	name	must	be	specified	as	the	function	parameter.	To	obtain	the
average	value	of	multiple	columns,	multiple	AVG()	functions	must	be	used.

Note:	 	Values

Column	rows	containing	NULL	values	are	ignored	by	the	AVG()	function.

The	 	Function
COUNT()	does	just	that:	It	counts.	Using	COUNT(),	you	can	determine	the	number	of
rows	in	a	table	or	the	number	of	rows	that	match	a	specific	criterion.

COUNT()	can	be	used	two	ways:

	Use	COUNT(*)	to	count	the	number	of	rows	in	a	table,	whether	columns	contain
values	or	NULL	values.

	Use	COUNT(column)	to	count	the	number	of	rows	that	have	values	in	a	specific
column,	ignoring	NULL	values.

This	first	example	returns	the	total	number	of	customers	in	the	customers	table:

Input

SELECT	COUNT(*)	AS	num_cust
FROM	customers;

Output
+–––-+
|	num_cust	|
+–––-+
|								5	|
+–––-+

Analysis

In	this	example,	COUNT(*)	is	used	to	count	all	rows,	regardless	of	values.	The	count	is
returned	in	num_cust.

The	following	example	counts	just	the	customers	with	an	email	address:

Input
Click	here	to	view	code	image

SELECT	COUNT(cust_email)	AS	num_cust
FROM	customers;

Output

+–––-+
|	num_cust	|
+–––-+
|								3	|
+–––-+

Analysis

This	SELECT	statement	uses	COUNT(cust_email)	to	count	only	rows	with	a	value	in
the	cust_email	column.	In	this	example,	cust_email	is	3	(meaning	that	only	three
of	the	five	customers	have	email	addresses).

Note:	 	Values

Column	rows	with	NULL	values	in	them	are	ignored	by	the	COUNT()	function	if	a
column	name	is	specified,	but	not	if	the	asterisk	(*)	is	used.

The	 	Function
MAX()	returns	the	highest	value	in	a	specified	column.	MAX()	requires	that	the	column
name	be	specified,	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	MAX(prod_price)	AS	max_price
FROM	products;

Output
+–––—+
|	max_price	|
+–––—+
|								55	|
+–––—+

Analysis

Here	MAX()	returns	the	price	of	the	most	expensive	item	in	the	products	table.

Tip:	Using	 	with	Non-Numeric	Data

Although	MAX()	is	usually	used	to	find	the	highest	numeric	or	date	values,	Oracle
allows	it	to	be	used	to	return	the	highest	value	in	any	column	including	textual
columns.	When	used	with	textual	data,	MAX()	returns	the	row	that	would	be	the
last	if	the	data	were	sorted	by	that	column.

Note:	 	Values

Column	rows	with	NULL	values	in	them	are	ignored	by	the	MAX()	function.

The	 	Function
MIN()	does	the	exact	opposite	of	MAX();	it	returns	the	lowest	value	in	a	specified
column.	Like	MAX(),	MIN()	requires	that	the	column	name	be	specified,	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	MIN(prod_price)	AS	min_price
FROM	products;

Output
+–––—+
|	min_price	|
+–––—+
|							2.5	|
+–––—+

Analysis

Here	MIN()	returns	the	price	of	the	least	expensive	item	in	the	products	table.

Tip:	Using	 	with	Non-Numeric	Data

As	with	the	MAX()	function,	Oracle	allows	MIN()	to	be	used	to	return	the	lowest
value	in	any	columns	including	textual	columns.	When	used	with	textual	data,
MIN()	returns	the	row	that	would	be	first	if	the	data	were	sorted	by	that	column.

Note:	 	Values

Column	rows	with	NULL	values	in	them	are	ignored	by	the	MIN()	function.

The	 	Function
SUM()	is	used	to	return	the	sum	(total)	of	the	values	in	a	specific	column.

Here	is	an	example	to	demonstrate	this.	The	orderitems	table	contains	the	actual	items
in	an	order,	and	each	item	has	an	associated	quantity.	The	total	number	of	items
ordered	(the	sum	of	all	the	quantity	values)	can	be	retrieved	as	follows:

Input
Click	here	to	view	code	image

SELECT	SUM(quantity)	AS	items_ordered
FROM	orderitems
WHERE	order_num	=	20005;

Output
+–––––+
|	items_ordered	|
+–––––+

|												19	|
+–––––+

Analysis

The	function	SUM(quantity)	returns	the	sum	of	all	the	item	quantities	in	an	order,	and
the	WHERE	clause	ensures	that	just	the	right	order	items	are	included.

SUM()	can	also	be	used	to	total	calculated	values.	In	this	next	example,	the	total	order
amount	is	retrieved	by	totaling	item_price*quantity	for	each	item:

Input
Click	here	to	view	code	image

SELECT	SUM(item_price*quantity)	AS	total_price
FROM	orderitems
WHERE	order_num	=	20005;

Output
+––––-+
|	total_price	|
+––––-+
|						149.87	|
+––––-+

Analysis

The	function	SUM(item_price*quantity)	returns	the	sum	of	all	the	expanded
prices	in	an	order,	and	again	the	WHERE	clause	ensures	that	just	the	correct	order	items	are
included.

Tip:	Performing	Calculations	on	Multiple	Columns

All	the	aggregate	functions	can	be	used	to	perform	calculations	on	multiple
columns	using	the	standard	mathematical	operators,	as	shown	in	the	example.

Note:	 	Values

Column	rows	with	NULL	values	in	them	are	ignored	by	the	SUM()	function.

Aggregates	on	Distinct	Values
The	five	aggregate	functions	can	all	be	used	in	two	ways:

	To	perform	calculations	on	all	rows,	specify	the	ALL	argument,	or	specify	no
argument	at	all	(because	ALL	is	the	default	behavior).

	To	only	include	unique	values,	specify	the	DISTINCT	argument.

Tip:	 	Is	Default

The	ALL	argument	need	not	be	specified	because	it	is	the	default	behavior.	If
DISTINCT	is	not	specified,	ALL	is	assumed.

The	following	example	uses	the	AVG()	function	to	return	the	average	product	price
offered	by	a	specific	vendor.	It	is	the	same	SELECT	statement	used	in	the	previous
example,	but	here	the	DISTINCT	argument	is	used	so	the	average	only	takes	into	account
unique	prices:

Input
Click	here	to	view	code	image

SELECT	AVG(DISTINCT	prod_price)	AS	avg_price
FROM	products
WHERE	vend_id	=	1003;

Output
+–––—+
|	avg_price	|
+–––—+
|				15.998	|
+–––—+

Analysis

As	you	can	see,	in	this	example,	avg_price	is	higher	when	DISTINCT	is	used	because
there	are	multiple	items	with	the	same	lower	price.	Excluding	them	raises	the	average
price.

Caution:	Using	

DISTINCT	may	only	be	used	with	COUNT()	if	a	column	name	is	specified.
DISTINCT	may	not	be	used	with	COUNT(*),	and	so	COUNT(DISTINCT	*)	is
not	allowed	and	generates	an	error.	Similarly,	DISTINCT	must	be	used	with	a
column	name	and	not	with	a	calculation	or	expression.

Tip:	Using	 	with	 	and	

Although	DISTINCT	can	technically	be	used	with	MIN()	and	MAX(),	there	is
actually	no	value	in	doing	so.	The	minimum	and	maximum	values	in	a	column	are
the	same	whether	or	not	only	distinct	values	are	included.

Combining	Aggregate	Functions
All	the	examples	of	aggregate	functions	used	thus	far	have	involved	a	single	function.	But
actually,	SELECT	statements	may	contain	as	few	or	as	many	aggregate	functions	as
needed.	Look	at	this	example:

Input
Click	here	to	view	code	image

SELECT	COUNT(*)	AS	num_items,
							MIN(prod_price)	AS	price_min,
							MAX(prod_price)	AS	price_max,
							AVG(prod_price)	AS	price_avg
FROM	products;

Output
Click	here	to	view	code	image

+–––—+–––—+–––—+––––+
|	num_items	|	price_min	|	price_max	|	price_avg		|
+–––—+–––—+–––—+––––+
|								14	|							2.5	|								55	|	16.1335714	|
+–––—+–––—+–––—+––––+

Analysis

Here	a	single	SELECT	statement	performs	four	aggregate	calculations	in	one	step	and
returns	four	values	(the	number	of	items	in	the	products	table;	and	the	highest,	lowest,
and	average	product	prices).

Tip:	Naming	Aliases

When	specifying	alias	names	to	contain	the	results	of	an	aggregate	function,	try	to
not	use	the	name	of	an	actual	column	in	the	table.	Although	there	is	nothing
actually	illegal	about	doing	so,	using	unique	names	makes	your	SQL	easier	to
understand	and	work	with	(and	troubleshoot	in	the	future).

Summary
Aggregate	functions	are	used	to	summarize	data.	Oracle	supports	a	range	of	aggregate
functions,	all	of	which	can	be	used	in	multiple	ways	to	return	just	the	results	you	need.
These	functions	are	designed	to	be	highly	efficient,	and	they	usually	return	results	far
more	quickly	than	you	could	calculate	them	yourself	in	your	own	client	application.

Lesson	13.	Grouping	Data

In	this	lesson,	you’ll	learn	how	to	group	data	so	you	can	summarize	subsets	of	table
contents.	This	involves	two	new	SELECT	statement	clauses:	the	GROUP	BY	clause	and
the	HAVING	clause.

Understanding	Data	Grouping
In	the	last	lesson,	you	learned	that	the	SQL	aggregate	functions	can	be	used	to	summarize
data.	This	enables	you	to	count	rows,	calculate	sums	and	averages,	and	obtain	high	and
low	values	without	having	to	retrieve	all	the	data.

All	the	calculations	thus	far	were	performed	on	all	the	data	in	a	table	or	on	data	that
matched	a	specific	WHERE	clause.	As	a	reminder,	the	following	example	returns	the
number	of	products	offered	by	vendor	1003:

Input
Click	here	to	view	code	image

SELECT	COUNT(*)	AS	num_prods
FROM	products
WHERE	vend_id	=	1003;

Output
+–––—+
|	num_prods	|
+–––—+
|									7	|
+–––—+

But	what	if	you	want	to	return	the	number	of	products	offered	by	each	vendor?	Or
products	offered	by	vendors	who	offer	a	single	product,	or	only	those	who	offer	more	than
10	products?

This	is	where	groups	come	into	play.	Grouping	enables	you	to	divide	data	into	logical	sets
so	you	can	perform	aggregate	calculations	on	each	group.

Creating	Groups
Groups	are	created	using	the	GROUP	BY	clause	in	your	SELECT	statement.	The	best	way
to	understand	this	is	to	look	at	an	example:

Input

SELECT	vend_id,	COUNT(*)	AS	num_prods
FROM	products
GROUP	BY	vend_id;

Output
+–––+–––—+
|	vend_id	|	num_prods	|

+–––+–––—+
1001	3
1002	2
1003	7
1005	2
+–––+–––—+

Analysis

The	preceding	SELECT	statement	specifies	two	columns:	vend_id,	which	contains	the
ID	of	a	product’s	vendor,	and	num_prods,	which	is	a	calculated	field	(created	using	the
COUNT(*)	function).	The	GROUP	BY	clause	instructs	Oracle	to	sort	the	data	and	group
it	by	vend_id.	This	causes	num_prods	to	be	calculated	once	per	vend_id	rather	than
once	for	the	entire	table.	As	you	can	see	in	the	output,	vendor	1001	has	3	products	listed,
vendor	1002	has	2	products	listed,	vendor	1003	has	7	products	listed,	and	vendor	1005
has	2	products	listed.

Because	you	used	GROUP	BY,	you	did	not	have	to	specify	each	group	to	be	evaluated	and
calculated.	That	was	done	automatically.	The	GROUP	BY	clause	instructs	Oracle	to	group
the	data	and	then	perform	the	aggregate	on	each	group	rather	than	on	the	entire	result	set.

Before	you	use	GROUP	BY,	here	are	some	important	rules	about	its	use	that	you	need	to
know:

	GROUP	BY	clauses	can	contain	as	many	columns	as	you	want.	This	enables	you	to
nest	groups,	providing	you	with	more	granular	control	over	how	data	is	grouped.

	If	you	have	nested	groups	in	your	GROUP	BY	clause,	data	is	summarized	at	the	last
specified	group.	In	other	words,	all	the	columns	specified	are	evaluated	together
when	grouping	is	established	(so	you	won’t	get	data	back	for	each	individual	column
level).

	Every	column	listed	in	GROUP	BY	must	be	a	retrieved	column	or	a	valid	expression
(but	not	an	aggregate	function).	If	an	expression	is	used	in	the	SELECT,	that	same
expression	must	be	specified	in	GROUP	BY.	Aliases	cannot	be	used.

	Aside	from	the	aggregate	calculations	statements,	every	column	in	your	SELECT
statement	should	be	present	in	the	GROUP	BY	clause.

	If	the	grouping	column	contains	a	row	with	a	NULL	value,	NULL	will	be	returned	as
a	group.	If	there	are	multiple	rows	with	NULL	values,	they’ll	all	be	grouped	together.

	The	GROUP	BY	clause	must	come	after	any	WHERE	clause	and	before	any	ORDER
BY	clause.

Filtering	Groups
In	addition	to	being	able	to	group	data	using	GROUP	BY,	Oracle	also	allows	you	to	filter
which	groups	to	include	and	which	to	exclude.	For	example,	you	might	want	a	list	of	all
customers	who	have	made	at	least	two	orders.	To	obtain	this	data,	you	must	filter	based	on
the	complete	group,	not	on	individual	rows.

You’ve	already	seen	the	WHERE	clause	in	action	(introduced	back	in	Lesson	6,	“Filtering
Data”).	But	WHERE	does	not	work	here	because	WHERE	filters	specific	rows,	not	groups.
As	a	matter	of	fact,	WHERE	has	no	idea	what	a	group	is.

So	what	do	you	use	instead	of	WHERE?	Oracle	provides	yet	another	clause	for	this
purpose:	the	HAVING	clause.	HAVING	is	very	similar	to	WHERE.	In	fact,	all	types	of
WHERE	clauses	you	learned	about	thus	far	can	also	be	used	with	HAVING.	The	only
difference	is	that	WHERE	filters	rows	and	HAVING	filters	groups.

Tip:	 	Supports	All	of	 ’s	Operators

In	Lesson	6	and	Lesson	7,	“Advanced	Data	Filtering,”	you	learned	about	WHERE
clause	conditions	(including	wildcard	conditions	and	clauses	with	multiple
operators).	All	the	techniques	and	options	you	learned	about	WHERE	can	be	applied
to	HAVING.	The	syntax	is	identical;	just	the	keyword	is	different.

So	how	do	you	filter	rows?	Look	at	the	following	example:

Input
Click	here	to	view	code	image

SELECT	cust_id,	COUNT(*)	AS	orders
FROM	orders
GROUP	BY	cust_id
HAVING	COUNT(*)	>=	2;

Output
+–––+––—+
|	cust_id	|	orders	|
+–––+––—+
|			10001	|						2	|
+–––+––—+

Analysis

The	first	three	lines	of	this	SELECT	statement	are	similar	to	the	statements	shown
previously.	The	final	line	adds	a	HAVING	clause	that	filters	on	those	groups	with	a
COUNT(*)	>=	2—two	or	more	orders.

Obviously,	a	WHERE	clause	couldn’t	have	worked	here	because	the	filtering	is	based	on
the	group	aggregate	value,	not	on	the	values	of	specific	rows.

Note:	The	Difference	Between	 	and	

Here’s	another	way	to	look	at	it:	WHERE	filters	before	data	is	grouped,	and	HAVING
filters	after	data	is	grouped.	This	is	an	important	distinction;	rows	that	are
eliminated	by	a	WHERE	clause	are	not	included	in	the	group.	This	could	change	the
calculated	values,	which	in	turn	could	affect	which	groups	are	filtered	based	on	the
use	of	those	values	in	the	HAVING	clause.

So	is	there	ever	a	need	to	use	both	WHERE	and	HAVING	clauses	in	one	statement?
Actually,	yes,	there	is.	Suppose	you	want	to	further	filter	the	previous	statement	so	it
returns	any	customers	who	placed	two	or	more	orders	in	the	past	12	months.	To	do	that,
you	can	add	a	WHERE	clause	that	filters	out	just	the	orders	placed	in	the	past	12	months.
You	then	add	a	HAVING	clause	to	filter	just	the	groups	with	two	or	more	rows	in	them.

To	better	demonstrate	this,	look	at	the	following	example	that	lists	all	vendors	who	have	2
or	more	products	priced	at	10	or	more:

Input
Click	here	to	view	code	image

SELECT	vend_id,	COUNT(*)	AS	num_prods
FROM	products
WHERE	prod_price	>=	10
GROUP	BY	vend_id
HAVING	COUNT(*)	>=	2;

Output
+–––+–––—+
|	vend_id	|	num_prods	|
+–––+–––—+
|				1003	|									4	|
|				1005	|									2	|
+–––+–––—+

Analysis

This	statement	warrants	an	explanation.	The	first	line	is	a	basic	SELECT	using	an
aggregate	function—much	like	the	examples	thus	far.	The	WHERE	clause	filters	all	rows
with	a	prod_price	of	at	least	10.	Data	is	then	grouped	by	vend_id,	and	then	a
HAVING	clause	filters	just	those	groups	with	a	count	of	2	or	more.	Without	the	WHERE
clause,	two	extra	rows	would	have	been	retrieved	(vendor	1002	who	only	sells	products
all	priced	under	10,	and	vendor	1001	who	sells	three	products	but	only	one	of	them	is
priced	greater	or	equal	to	10),	as	shown	here:

Input
Click	here	to	view	code	image

SELECT	vend_id,	COUNT(*)	AS	num_prods
FROM	products
GROUP	BY	vend_id
HAVING	COUNT(*)	>=	2;

Output
+–––+–––—+
|	vend_id	|	num_prods	|
+–––+–––—+
1001	3
1002	2
1003	7
1005	2

+–––+–––—+

Grouping	and	Sorting
It	is	important	to	understand	that	GROUP	BY	and	ORDER	BY	are	very	different,	even
though	they	often	accomplish	the	same	thing.	Table	13.1	summarizes	the	differences
between	them.

TABLE	13.1	ORDER	BY	Versus	GROUP	BY

The	first	difference	listed	in	Table	13.1	is	extremely	important.	More	often	than	not,	you
will	find	that	data	grouped	using	GROUP	BY	will	indeed	be	output	in	group	order.	But
that	is	not	always	the	case,	and	it	is	not	actually	required	by	the	SQL	specifications.
Furthermore,	you	might	actually	want	it	sorted	differently	than	it	is	grouped.	Just	because
you	group	data	one	way	(to	obtain	group-specific	aggregate	values)	does	not	mean	that
you	want	the	output	sorted	that	same	way.	You	should	always	provide	an	explicit	ORDER
BY	clause	as	well,	even	if	it	is	identical	to	the	GROUP	BY	clause.

Tip:	Don’t	Forget	

As	a	rule,	any	time	you	use	a	GROUP	BY	clause,	you	should	also	specify	an
ORDER	BY	clause.	That	is	the	only	way	to	ensure	that	data	is	sorted	properly.
Never	rely	on	GROUP	BY	to	sort	your	data.

To	demonstrate	the	use	of	both	GROUP	BY	and	ORDER	BY,	let’s	look	at	an	example.	The
following	SELECT	statement	is	similar	to	the	ones	shown	previously.	It	retrieves	the	order
number	and	total	order	price	of	all	orders	with	a	total	price	of	50	or	more:

Input
Click	here	to	view	code	image

SELECT	order_num,	SUM(quantity*item_price)	AS	ordertotal
FROM	orderitems
GROUP	BY	order_num
HAVING	SUM(quantity*item_price)	>=	50;

Output
+–––—+––––+

|	order_num	|	ordertotal	|
+–––—+––––+
20005	149.87
20006	55
20007	1000
20008	125
+–––—+––––+

To	sort	the	output	by	order	total,	all	you	need	to	do	is	add	an	ORDER	BY	clause,	as
follows:

Input
Click	here	to	view	code	image

SELECT	order_num,	SUM(quantity*item_price)	AS	ordertotal
FROM	orderitems
GROUP	BY	order_num
HAVING	SUM(quantity*item_price)	>=	50
ORDER	BY	ordertotal;

Output
+–––—+––––+
|	order_num	|	ordertotal	|
+–––—+––––+
20006	55
20008	125
20005	149.87
20007	1000
+–––—+––––+

Analysis

In	this	example,	the	GROUP	BY	clause	is	used	to	group	the	data	by	order	number	(the
order_num	column)	so	that	the	SUM(*)	function	can	return	the	total	order	price.	The
HAVING	clause	filters	the	data	so	that	only	orders	with	a	total	price	of	50	or	more	are
returned.	Finally,	the	output	is	sorted	using	the	ORDER	BY	clause.

	Clause	Ordering
This	is	probably	a	good	time	to	review	the	order	in	which	SELECT	statement	clauses	are
to	be	specified.	Table	13.2	lists	all	the	clauses	you	have	learned	thus	far,	in	the	order	they
must	be	used.

TABLE	13.2	SELECT	Clauses	and	Their	Sequence

Summary
In	Lesson	12,	“Summarizing	Data,”	you	learned	how	to	use	the	SQL	aggregate	functions
to	perform	summary	calculations	on	your	data.	In	this	lesson,	you	learned	how	to	use	the
GROUP	BY	clause	to	perform	these	calculations	on	groups	of	data,	returning	results	for
each	group.	You	saw	how	to	use	the	HAVING	clause	to	filter	specific	groups.	You	also
learned	the	difference	between	ORDER	BY	and	GROUP	BY	and	between	WHERE	and
HAVING.

Lesson	14.	Working	with	Subqueries

In	this	lesson,	you’ll	learn	what	subqueries	are	and	how	to	use	them.

Understanding	Subqueries
SELECT	statements	are	SQL	queries.	All	the	SELECT	statements	you	have	seen	thus	far
are	simple	queries:	single	statements	retrieving	data	from	individual	database	tables.

Query

Any	SQL	statement.	However,	the	term	is	usually	used	to	refer	to	SELECT
statements.

SQL	also	enables	you	to	create	subqueries:	queries	that	are	embedded	into	other	queries.
Why	would	you	want	to	do	this?	The	best	way	to	understand	this	concept	is	to	look	at	a
couple	of	examples.

Filtering	by	Subquery
The	database	tables	used	in	all	the	lessons	in	this	book	are	relational	tables.	(See	Appendix
A,	“The	Example	Tables,”	for	a	description	of	each	of	the	tables	and	their	relationships.)
Order	data	is	stored	in	two	tables.	The	orders	table	stores	a	single	row	for	each	order
containing	order	number,	customer	ID,	and	order	date.	The	individual	order	items	are
stored	in	the	related	orderitems	table.	The	orders	table	does	not	store	customer
information.	It	only	stores	a	customer	ID.	The	actual	customer	information	is	stored	in	the
customers	table.

Now	suppose	you	wanted	a	list	of	all	the	customers	who	ordered	item	TNT2.	What	would
you	have	to	do	to	retrieve	this	information?	Here	are	the	steps:

1.	Retrieve	the	order	numbers	of	all	orders	containing	item	TNT2.

2.	Retrieve	the	customer	ID	of	all	the	customers	who	have	orders	listed	in	the	order
numbers	returned	in	the	previous	step.

3.	Retrieve	the	customer	information	for	all	the	customer	IDs	returned	in	the	previous
step.

Each	of	these	steps	can	be	executed	as	a	separate	query.	By	doing	so,	you	use	the	results
returned	by	one	SELECT	statement	to	populate	the	WHERE	clause	of	the	next	SELECT
statement.

You	can	also	use	subqueries	to	combine	all	three	queries	into	one	single	statement.

The	first	SELECT	statement	should	be	self-explanatory	by	now.	It	retrieves	the
order_num	column	for	all	order	items	with	a	prod_id	of	TNT2.	The	output	lists	the
two	orders	containing	this	item:

Input

SELECT	order_num
FROM	orderitems
WHERE	prod_id	=	‘TNT2’;

Output
+–––—+
|	order_num	|
+–––—+
|					20005	|
|					20007	|
+–––—+

The	next	step	is	to	retrieve	the	customer	IDs	associated	with	orders	20005	and	20007.
Using	the	IN	clause	described	in	Lesson	7,	“Advanced	Data	Filtering,”	you	can	create	a
SELECT	statement	as	follows:

Input
Click	here	to	view	code	image

SELECT	cust_id
FROM	orders
WHERE	order_num	IN	(20005,20007);

Output
+–––+
|	cust_id	|
+–––+
|			10001	|
|			10004	|
+–––+

Now,	combine	the	two	queries	by	turning	the	first	(the	one	that	returned	the	order
numbers)	into	a	subquery.	Look	at	the	following	SELECT	statement:

Input
Click	here	to	view	code	image

SELECT	cust_id
FROM	orders
WHERE	order_num	IN	(SELECT	order_num
																				FROM	orderitems
																				WHERE	prod_id	=	‘TNT2’);

Output
+–––+
|	cust_id	|
+–––+
|			10001	|
|			10004	|
+–––+

Analysis

Subqueries	are	always	processed	starting	with	the	innermost	SELECT	statement	and
working	outward.	When	the	preceding	SELECT	statement	is	processed,	Oracle	actually

performs	two	operations.

First,	it	runs	the	subquery:
Click	here	to	view	code	image

SELECT	order_num	FROM	orderitems	WHERE	prod_id=‘TNT2’

That	query	returns	the	two	order	numbers	20005	and	20007.	Those	two	values	are	then
passed	to	the	WHERE	clause	of	the	outer	query	in	the	comma-delimited	format	required	by
the	IN	operator.	The	outer	query	now	becomes
Click	here	to	view	code	image

SELECT	cust_id	FROM	orders	WHERE	order_num	IN	(20005,20007)

As	you	can	see,	the	output	is	correct	and	exactly	the	same	as	the	output	returned	by	the
previous	hard-coded	WHERE	clause.

Tip:	Formatting	Your	SQL

SELECT	statements	containing	subqueries	can	be	difficult	to	read	and	debug,
especially	as	they	grow	in	complexity.	Breaking	up	the	queries	over	multiple	lines
and	indenting	the	lines	appropriately	as	shown	here	can	greatly	simplify	working
with	subqueries.

You	now	have	the	IDs	of	all	the	customers	who	ordered	item	TNT2.	The	next	step	is	to
retrieve	the	customer	information	for	each	of	those	customer	IDs.	The	SQL	statement	to
retrieve	the	two	columns	is	as	follows:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
WHERE	cust_id	IN	(10001,10004);

Instead	of	hard-coding	those	customer	IDs,	you	can	turn	this	WHERE	clause	into	yet
another	subquery:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
WHERE	cust_id	IN	(SELECT	cust_id
																		FROM	orders
																		WHERE	order_num	IN	(SELECT	order_num
																																						FROM	orderitems
																																						WHERE	prod_id	=	‘TNT2’));

Output
Click	here	to	view	code	image

+–––––-+––––—+

|	cust_name						|	cust_contact	|
+–––––-+––––—+
|	Coyote	Inc.				|	Y	Lee								|
|	Yosemite	Place	|	Y	Sam								|
+–––––-+––––—+

Analysis

To	execute	this	SELECT	statement,	Oracle	had	to	actually	perform	three	SELECT
statements.	The	innermost	subquery	returned	a	list	of	order	numbers	that	were	then	used
as	the	WHERE	clause	for	the	subquery	above	it.	That	subquery	returned	a	list	of	customer
IDs	that	were	used	as	the	WHERE	clause	for	the	top-level	query.	The	top-level	query
actually	returned	the	desired	data.

As	you	can	see,	using	subqueries	in	a	WHERE	clause	enables	you	to	write	extremely
powerful	and	flexible	SQL	statements.	We	nested	three	levels	deep	here,	but	if	needed,
you	can	nest	far	deeper	than	that.	Just	keep	in	mind	that	performance	will	start	to
deteriorate	the	further	you	nest	queries.

Caution:	Columns	Must	Match

When	using	a	subquery	in	a	WHERE	clause	(as	shown	here),	make	sure	that	the
SELECT	statement	has	the	same	number	of	columns	as	in	the	WHERE	clause.
Usually,	a	single	column	will	be	returned	by	the	subquery	and	matched	against	a
single	column,	but	multiple	columns	may	be	used	if	needed.

Although	usually	used	with	the	IN	operator,	subqueries	can	also	be	used	to	test	for
equality	(using	=),	non-equality	(using	<>),	and	so	on.

Note:	Maximum	Number	of	Subqueries

Oracle	allows	you	to	nest	a	maximum	of	255	levels	of	subqueries	within	a	WHERE
clause	(although	you	would	be	hard	pressed	to	find	a	situation	that	warrants	doing
this!).

Caution:	Subqueries	and	Performance

The	code	shown	here	works,	and	it	achieves	the	desired	result.	However,	using
subqueries	is	not	always	the	most	efficient	way	to	perform	this	type	of	data
retrieval,	although	it	might	be.	More	on	this	is	in	Lesson	15,	“Joining	Tables,”
where	you	will	revisit	this	same	example.

Using	Subqueries	as	Calculated	Fields
Another	way	to	use	subqueries	is	in	creating	calculated	fields.	Suppose	you	want	to
display	the	total	number	of	orders	placed	by	every	customer	in	your	customers	table.
Orders	are	stored	in	the	orders	table	along	with	the	appropriate	customer	ID.

To	perform	this	operation,	follow	these	steps:

1.	Retrieve	the	list	of	customers	from	the	customers	table.

2.	For	each	customer	retrieved,	count	the	number	of	associated	orders	in	the	orders
table.

As	you	learned	in	the	previous	two	lessons,	you	can	use	SELECT	COUNT(*)	to	count
rows	in	a	table,	and	by	providing	a	WHERE	clause	to	filter	a	specific	customer	ID,	you	can
count	just	that	customer’s	orders.	For	example,	the	following	code	counts	the	number	of
orders	placed	by	customer	10001:

Input

SELECT	COUNT(*)	AS	orders
FROM	orders
WHERE	cust_id	=	10001;

To	perform	that	COUNT(*)	calculation	for	each	customer,	use	COUNT*	as	a	subquery.
Look	at	the	following	code:

Input
Click	here	to	view	code	image

SELECT	cust_name,
							cust_state,
							(SELECT	COUNT(*)
								FROM	orders
								WHERE	orders.cust_id	=	customers.cust_id)	AS	orders
FROM	customers
ORDER	BY	cust_name;

Output
Click	here	to	view	code	image

+–––––-+––––+––—+
|	cust_name						|	cust_state	|	orders	|
+–––––-+––––+––—+
Coyote Inc.	MI	2
E Fudd	IL	1
Mouse House	OH	0
Wascals	IN	1
Yosemite Place	AZ	1
+–––––-+––––+––—+

Analysis

This	SELECT	statement	returns	three	columns	for	every	customer	in	the	customers
table:	cust_name,	cust_state,	and	orders.	orders	is	a	calculated	field	that	is	set
by	a	subquery	provided	in	parentheses.	That	subquery	is	executed	once	for	every	customer
retrieved.	In	this	example,	the	subquery	is	executed	five	times	because	five	customers
were	retrieved.

The	WHERE	clause	in	the	subquery	is	a	little	different	from	the	WHERE	clauses	used
previously	because	it	uses	fully	qualified	column	names	(first	mentioned	in	Lesson	4,
“Retrieving	Data”).	The	following	clause	tells	SQL	to	compare	the	cust_id	in	the

orders	table	to	the	one	currently	being	retrieved	from	the	customers	table:
Click	here	to	view	code	image

WHERE	orders.cust_id	=	customers.cust_id

Correlated	Subquery

A	subquery	that	refers	to	the	outer	query.

The	type	of	subquery	is	called	a	correlated	subquery.	This	syntax—the	table	name	and	the
column	name	separated	by	a	period—must	be	used	whenever	there	is	possible	ambiguity
about	column	names.	Why?	Well,	let’s	look	at	what	happens	if	fully	qualified	column
names	are	not	used:

Input
Click	here	to	view	code	image

SELECT	cust_name,
							cust_state,
							(SELECT	COUNT(*)
								FROM	orders
								WHERE	cust_id	=	cust_id)	AS	orders
FROM	customers
ORDER	BY	cust_name;

Output
Click	here	to	view	code	image

+–––––-+––––+––—+
|	cust_name						|	cust_state	|	orders	|
+–––––-+––––+––—+
Coyote Inc.	MI	5
E Fudd	IL	5
Mouse House	OH	5
Wascals	IN	5
Yosemite Place	AZ	5
+–––––-+––––+––—+

Analysis

Obviously	the	returned	results	are	incorrect	(compare	them	to	the	previous	results),	but
why	did	this	happen?	There	are	two	cust_id	columns,	one	in	customers	and	one	in
orders,	and	those	two	columns	need	to	be	compared	to	correctly	match	orders	with	their
appropriate	customers.	Without	fully	qualifying	the	column	names,	Oracle	assumes	you
are	comparing	the	cust_id	in	the	orders	table	to	itself.	And
Click	here	to	view	code	image

SELECT	COUNT(*)	FROM	orders	WHERE	cust_id	=	cust_id;

always	returns	the	total	number	of	orders	in	the	orders	table	(because	Oracle	checks	to
see	that	every	order’s	cust_id	matches	itself,	which	it	always	does,	of	course).

Although	subqueries	are	extremely	useful	in	constructing	this	type	of	SELECT	statement,
care	must	be	taken	to	properly	qualify	ambiguous	column	names.

Note:	Always	More	Than	One	Solution

As	explained	earlier	in	this	lesson,	although	the	sample	code	shown	here	works,	it
is	often	not	the	most	efficient	way	to	perform	this	type	of	data	retrieval.	You	will
revisit	this	example	in	a	later	lesson.

Tip:	Build	Queries	with	Subqueries	Incrementally

Testing	and	debugging	queries	with	subqueries	can	be	tricky,	particularly	as	these
statements	grow	in	complexity.	The	safest	way	to	build	(and	test)	queries	with
subqueries	is	to	do	so	incrementally,	in	much	the	same	way	as	Oracle	processes
them.	Build	and	test	the	innermost	query	first.	Then	build	and	test	the	outer	query
with	hard-coded	data,	and	only	after	you	have	verified	that	it	is	working	embed	the
subquery.	Then	test	it	again,	and	keep	repeating	these	steps	for	each	additional
query.	This	will	take	just	a	little	longer	to	construct	your	queries,	but	it	saves	you
lots	of	time	later	(when	you	try	to	figure	out	why	queries	are	not	working)	and
significantly	increases	the	likelihood	of	them	working	the	first	time.

Note:	 	Clause	Subqueries

In	addition	to	the	subqueries	used	in	SELECT	and	WHERE	clauses	shown	in	this
lesson,	Oracle	also	supports	the	use	of	subqueries	in	the	FROM	clause.	This	type	of
subquery	is	called	an	inline	view,	and	it	is	a	way	to	create	a	virtual	table	of	sorts.
Inline	views	are	infrequently	used	and	are	thus	not	covered	in	this	book,	but	views
themselves	are	introduced	in	Lesson	21,	“Using	Views.”

Summary
In	this	lesson,	you	learned	what	subqueries	are	and	how	to	use	them.	The	most	common
uses	for	subqueries	are	in	WHERE	clauses,	in	IN	operators,	and	for	populating	calculated
columns.	You	saw	examples	of	both	of	these	types	of	operations.

Lesson	15.	Joining	Tables

In	this	lesson,	you’ll	learn	what	joins	are,	why	they	are	used,	and	how	to	create	SELECT
statements	using	them.

Understanding	Joins
One	of	SQL’s	most	powerful	features	is	the	capability	to	join	tables	on	the	fly	within	data
retrieval	queries.	Joins	are	one	of	the	most	important	operations	you	can	perform	using
SQL	SELECT,	and	a	good	understanding	of	joins	and	join	syntax	is	an	extremely
important	part	of	learning	SQL.

Before	you	can	effectively	use	joins,	you	must	understand	relational	tables	and	the	basics
of	relational	database	design.	What	follows	is	by	no	means	a	complete	coverage	of	the
subject,	but	it	should	be	enough	to	get	you	up	and	running.

Understanding	Relational	Tables
The	best	way	to	understand	relational	tables	is	to	look	at	a	real-world	example.

Suppose	you	had	a	database	table	containing	a	product	catalog,	with	each	catalog	item	in
its	own	row.	The	kind	of	information	you	would	store	with	each	item	would	include	a
product	description	and	price,	along	with	vendor	information	about	the	company	that
creates	the	product.

Now	suppose	you	had	multiple	catalog	items	created	by	the	same	vendor.	Where	would
you	store	the	vendor	information	(things	such	as	vendor	name,	address,	and	contact
information)?	You	wouldn’t	want	to	store	that	data	along	with	the	products	for	several
reasons:

	Because	the	vendor	information	is	the	same	for	each	product	that	vendor	produces,
repeating	the	information	for	each	product	is	a	waste	of	time	and	storage	space.

	If	vendor	information	changes	(for	example,	if	the	vendor	moves	or	his	area	code
changes),	you	would	need	to	update	every	occurrence	of	the	vendor	information.

	When	data	is	repeated	(that	is,	the	vendor	information	is	used	with	each	product),
there	is	a	high	likelihood	that	the	data	will	not	be	entered	exactly	the	same	way	each
time.	Inconsistent	data	is	extremely	difficult	to	use	in	reporting.

The	key	here	is	that	having	multiple	occurrences	of	the	same	data	is	never	a	good	thing,
and	that	principle	is	the	basis	for	relational	database	design.	Relational	tables	are	designed
so	information	is	split	into	multiple	tables,	one	for	each	data	type.	The	tables	are	related	to
each	other	through	common	values	(and	thus	the	relational	in	relational	design).

In	our	example,	you	can	create	two	tables,	one	for	vendor	information	and	one	for	product
information.	The	vendors	table	contains	all	the	vendor	information,	one	table	row	per
vendor,	along	with	a	unique	identifier	for	each	vendor.	This	value,	called	a	primary	key,
can	be	a	vendor	ID,	or	any	other	unique	value.	(Primary	keys	were	first	mentioned	in
Lesson	1,	“Understanding	SQL.”)

The	products	table	stores	only	product	information,	and	no	vendor-specific	information
other	than	the	vendor	ID	(the	vendors	table’s	primary	key).	This	key,	called	a	foreign
key,	relates	the	vendors	table	to	the	products	table,	and	using	this	vendor	ID	enables
you	to	use	the	vendors	table	to	find	the	details	about	the	appropriate	vendor.

Foreign	Key

A	column	in	one	table	that	contains	the	primary	key	values	from	another	table,	thus
defining	the	relationships	between	tables.

What	does	this	do	for	you?	Well,	consider	the	following:

	Vendor	information	is	never	repeated,	and	so	time	and	space	are	not	wasted.

	If	vendor	information	changes,	you	can	update	a	single	record	in	the	vendors
table.	Data	in	related	tables	does	not	change.

	As	no	data	is	repeated,	the	data	used	is	obviously	consistent,	making	data	reporting
and	manipulation	much	simpler.

The	bottom	line	is	that	relational	data	can	be	stored	efficiently	and	manipulated	easily.
Because	of	this,	relational	databases	scale	far	better	than	non-relational	databases.

Scale

Able	to	handle	an	increasing	load	without	failing.	A	well-designed	database	or
application	is	said	to	scale	well.

Why	Use	Joins?
As	just	explained,	breaking	data	into	multiple	tables	enables	more	efficient	storage,	easier
manipulation,	and	greater	scalability.	However,	these	benefits	come	with	a	price.

If	data	is	stored	in	multiple	tables,	how	can	you	retrieve	that	data	with	a	single	SELECT
statement?

The	answer	is	to	use	a	join.	Simply	put,	a	join	is	a	mechanism	used	to	associate	tables
within	a	SELECT	statement	(and	thus	the	name	join).	Using	a	special	syntax,	multiple
tables	can	be	joined	so	a	single	set	of	output	is	returned,	and	the	join	associates	the	correct
rows	in	each	table	on-the-fly.

Note:	Maintaining	Referential	Integrity

It	is	important	to	understand	that	a	join	is	not	a	physical	entity—in	other	words,	it
does	not	exist	in	the	actual	database	tables.	A	join	is	created	by	Oracle	as	needed,
and	it	persists	for	the	duration	of	the	query	execution.

When	using	relational	tables,	it	is	important	that	only	valid	data	is	inserted	into
relational	columns.	Going	back	to	the	example,	if	products	were	stored	in	the
products	table	with	an	invalid	vendor	ID	(one	not	present	in	the	vendors
table),	those	products	would	be	inaccessible	because	they	would	not	be	related	to
any	vendor.

To	prevent	this	from	occurring,	Oracle	can	be	instructed	to	only	allow	valid	values
(ones	present	in	the	vendors	table)	in	the	vendor	ID	column	in	the	products
table.	This	is	known	as	maintaining	referential	integrity,	and	is	achieved	by
specifying	the	primary	and	foreign	keys	as	part	of	the	table	definitions	(as	will	be
explained	in	Lesson	20,	“Creating	and	Manipulating	Tables”).

For	an	example	of	this,	see	the	create.sql	script	used	to	create	the
crashcourse	database	tables.	The	ALTER	TABLE	statements	at	the	end	of	the
file	are	defining	constrains	to	enforce	referential	integrity.

Creating	a	Join
Creating	a	join	is	very	simple.	You	must	specify	all	the	tables	to	be	included	and	how	they
are	related	to	each	other.	Look	at	the	following	example:

Input
Click	here	to	view	code	image

SELECT	vend_name,	prod_name,	prod_price
FROM	vendors,	products
WHERE	vendors.vend_id	=	products.vend_id
ORDER	BY	vend_name,	prod_name;

Output
Click	here	to	view	code	image

+––––-+–––––-+––––+
|	vend_name			|	prod_name						|	prod_price	|
+––––-+–––––-+––––+
ACME	Bird seed	10
ACME	Carrots	2.5
ACME	Detonator	13
ACME	Safe	50
ACME	Sling	4.49
ACME	TNT (1 stick)	2.5
ACME	TNT (5 sticks)	10
Anvils R Us	.5 ton anvil	5.99
Anvils R Us	1 ton anvil	9.99
Anvils R Us	2 ton anvil	14.99
Jet Set	JetPack 1000	35
Jet Set	JetPack 2000	55

|	LT	Supplies	|	Fuses										|				3.42				|
|	LT	Supplies	|	Oil	can								|				8.99				|
+––––-+–––––-+––––+

Analysis

Take	a	look	at	the	preceding	code.	The	SELECT	statement	starts	in	the	same	way	as	all	the
statements	you’ve	looked	at	thus	far,	by	specifying	the	columns	to	be	retrieved.	The	big
difference	here	is	that	two	of	the	specified	columns	(prod_name	and	prod_price)	are
in	one	table,	whereas	the	other	(vend_name)	is	in	another	table.

Now	look	at	the	FROM	clause.	Unlike	all	the	prior	SELECT	statements,	this	one	has	two
tables	listed	in	the	FROM	clause,	vendors	and	products.	These	are	the	names	of	the
two	tables	that	are	being	joined	in	this	SELECT	statement.	The	tables	are	correctly	joined
with	a	WHERE	clause	that	instructs	Oracle	to	match	vend_id	in	the	vendors	table	with
vend_id	in	the	products	table.

You’ll	notice	that	the	columns	are	specified	as	vendors.vend_id	and
products.vend_id.	This	fully	qualified	column	name	is	required	here	because	if	you
just	specified	vend_id,	Oracle	cannot	tell	which	vend_id	columns	you	are	referring	to
(as	there	are	two	of	them,	one	in	each	table).

Caution:	Fully	Qualifying	Column	Names

You	must	use	the	fully	qualified	column	name	(table	and	column	separated	by	a
period)	whenever	there	is	a	possible	ambiguity	about	to	which	column	you	are
referring.	Oracle	returns	an	error	message	if	you	refer	to	an	ambiguous	column
name	without	fully	qualifying	it	with	a	table	name.

The	Importance	of	the	 	Clause
It	might	seem	strange	to	use	a	WHERE	clause	to	set	the	join	relationship,	but	actually,	there
is	a	very	good	reason	for	this.	Remember,	when	tables	are	joined	in	a	SELECT	statement,
that	relationship	is	constructed	on	the	fly.	Nothing	in	the	database	table	definitions	can
instruct	Oracle	how	to	join	the	tables.	You	have	to	do	that	yourself.	When	you	join	two
tables,	what	you	are	actually	doing	is	pairing	every	row	in	the	first	table	with	every	row	in
the	second	table.	The	WHERE	clause	acts	as	a	filter	to	only	include	rows	that	match	the
specified	filter	condition—the	join	condition,	in	this	case.	Without	the	WHERE	clause,
every	row	in	the	first	table	is	paired	with	every	row	in	the	second	table,	regardless	of
whether	they	logically	go	together.

Cartesian	Product

The	results	returned	by	a	table	relationship	without	a	join	condition.	The	number	of
rows	retrieved	is	the	number	of	rows	in	the	first	table	multiplied	by	the	number	of
rows	in	the	second	table.

To	understand	this,	look	at	the	following	SELECT	statement	and	output:

Input
Click	here	to	view	code	image

SELECT	vend_name,	prod_name,	prod_price
FROM	vendors,	products
ORDER	BY	vend_name,	prod_name;

Output
Click	here	to	view	code	image

+–––––-+–––––-+––––+
|	vend_name						|	prod_name						|	prod_price	|
+–––––-+–––––-+––––+
ACME	.5 ton anvil	5.99
ACME	1 ton anvil	9.99
ACME	2 ton anvil	14.99
ACME	Bird seed	10
ACME	Carrots	2.5
ACME	Detonator	13
ACME	Fuses	3.42
ACME	JetPack 1000	35
ACME	JetPack 2000	55
ACME	Oil can	8.99
ACME	Safe	50
ACME	Sling	4.49
ACME	TNT (1 stick)	2.5
ACME	TNT (5 sticks)	10
Anvils R Us	.5 ton anvil	5.99
Anvils R Us	1 ton anvil	9.99
Anvils R Us	2 ton anvil	14.99
Anvils R Us	Bird seed	10
Anvils R Us	Carrots	2.5
Anvils R Us	Detonator	13
Anvils R Us	Fuses	3.42
Anvils R Us	JetPack 1000	35
Anvils R Us	JetPack 2000	55
Anvils R Us	Oil can	8.99
Anvils R Us	Safe	50
Anvils R Us	Sling	4.49
Anvils R Us	TNT (1 stick)	2.5
Anvils R Us	TNT (5 sticks)	10
Furball Inc.	.5 ton anvil	5.99
Furball Inc.	1 ton anvil	9.99
Furball Inc.	2 ton anvil	14.99
Furball Inc.	Bird seed	10
Furball Inc.	Carrots	2.5
Furball Inc.	Detonator	13
Furball Inc.	Fuses	3.42
Furball Inc.	JetPack 1000	35
Furball Inc.	JetPack 2000	55
Furball Inc.	Oil can	8.99
Furball Inc.	Safe	50
Furball Inc.	Sling	4.49
Furball Inc.	TNT (1 stick)	2.5
Furball Inc.	TNT (5 sticks)	10
Jet Set	.5 ton anvil	5.99
Jet Set	1 ton anvil	9.99
Jet Set	2 ton anvil	14.99
Jet Set	Bird seed	10
Jet Set	Carrots	2.5

Jet Set	Detonator	13
Jet Set	Fuses	3.42
Jet Set	JetPack 1000	35
Jet Set	JetPack 2000	55
Jet Set	Oil can	8.99
Jet Set	Safe	50
Jet Set	Sling	4.49
Jet Set	TNT (1 stick)	2.5
Jet Set	TNT (5 sticks)	10
Jouets Et Ours	.5 ton anvil	5.99
Jouets Et Ours	1 ton anvil	9.99
Jouets Et Ours	2 ton anvil	14.99
Jouets Et Ours	Bird seed	10
Jouets Et Ours	Carrots	2.5
Jouets Et Ours	Detonator	13
Jouets Et Ours	Fuses	3.42
Jouets Et Ours	JetPack 1000	35
Jouets Et Ours	JetPack 2000	55
Jouets Et Ours	Oil can	8.99
Jouets Et Ours	Safe	50
Jouets Et Ours	Sling	4.49
Jouets Et Ours	TNT (1 stick)	2.5
Jouets Et Ours	TNT (5 sticks)	10
LT Supplies	.5 ton anvil	5.99
LT Supplies	1 ton anvil	9.99
LT Supplies	2 ton anvil	14.99
LT Supplies	Bird seed	10
LT Supplies	Carrots	2.5
LT Supplies	Detonator	13
LT Supplies	Fuses	3.42
LT Supplies	JetPack 1000	35
LT Supplies	JetPack 2000	55
LT Supplies	Oil can	8.99
LT Supplies	Safe	50
LT Supplies	Sling	4.49
LT Supplies	TNT (1 stick)	2.5
LT Supplies	TNT (5 sticks)	10
+–––––-+–––––-+––––+

Analysis

As	you	can	see	in	the	preceding	output,	the	Cartesian	product	is	seldom	what	you	want.
The	data	returned	here	has	matched	every	product	with	every	vendor,	including	products
with	the	incorrect	vendor	(and	even	vendors	with	no	products	at	all).

Caution:	Don’t	Forget	the	 	Clause

Make	sure	all	your	joins	have	WHERE	clauses,	or	Oracle	returns	far	more	data	than
you	want.	Similarly,	make	sure	your	WHERE	clauses	are	correct.	An	incorrect	filter
condition	causes	Oracle	to	return	incorrect	data.

Tip:	Cross	Joins

Sometimes	you’ll	hear	the	type	of	join	that	returns	a	Cartesian	product	referred	to
as	a	cross	join.

Using	Inner	Joins
The	join	you	have	been	using	so	far	is	called	an	equijoin—a	join	based	on	the	testing	of
equality	between	two	tables.	This	kind	of	join	is	also	called	an	inner	join.	In	fact,	you	may
use	a	slightly	different	syntax	for	these	joins,	specifying	the	type	of	join	explicitly.	The
following	SELECT	statement	returns	the	exact	same	data	as	the	preceding	example:

Input
Click	here	to	view	code	image

SELECT	vend_name,	prod_name,	prod_price
FROM	vendors	INNER	JOIN	products
	ON	vendors.vend_id	=	products.vend_id;

Analysis

The	SELECT	in	the	statement	is	the	same	as	the	preceding	SELECT	statement,	but	the
FROM	clause	is	different.	Here	the	relationship	between	the	two	tables	is	part	of	the	FROM
clause	specified	as	INNER	JOIN.	When	using	this	syntax,	the	join	condition	is	specified
using	the	special	ON	clause	instead	of	a	WHERE	clause.	The	actual	condition	passed	to	ON
is	the	same	as	would	be	passed	to	WHERE.

Note:	Which	Syntax	to	Use?

Per	the	ANSI	SQL	specification,	use	of	the	INNER	JOIN	syntax	is	preferable.
Furthermore,	although	using	the	WHERE	clause	to	define	joins	is	indeed	simpler,
using	explicit	join	syntax	ensures	that	you	will	never	forget	the	join	condition,	and
can	impact	performance,	too	(in	some	cases).

Some	SQL	purists	will	insist	that	you	use	the	FROM	clause	to	define	your	joins.	But
I’m	a	huge	fan	of	simplifying	things,	and	Oracle	(like	every	other	DBMS	vendor)
has	implemented	support	for	the	simpler	syntax,	so	I	use	it	extensively.

Regardless,	you’re	likely	to	run	across	both	join	syntaxes	in	the	real	world.	As	such,
it’s	worthwhile	to	be	familiar	with	the	simplified	WHERE	clause	joins	and	the	ANSI
preferred	FROM	clause	joins.

Joining	Multiple	Tables
SQL	imposes	no	limit	to	the	number	of	tables	that	may	be	joined	in	a	SELECT	statement.
The	basic	rules	for	creating	the	join	remain	the	same.	First	list	all	the	tables,	and	then
define	the	relationship	between	each.	Here	is	an	example:

Input
Click	here	to	view	code	image

SELECT	prod_name,	vend_name,	prod_price,	quantity
FROM	orderitems,	products,	vendors
WHERE	products.vend_id	=	vendors.vend_id
		AND	orderitems.prod_id	=	products.prod_id

		AND	order_num	=	20005;

Output
Click	here	to	view	code	image

+–––––-+––––-+––––+–––-+
|	prod_name						|	vend_name			|	prod_price	|	quantity	|
+–––––-+––––-+––––+–––-+
.5 ton anvil	Anvils R Us	5.99	10
1 ton anvil	Anvils R Us	9.99	3
TNT (5 sticks)	ACME	10	5
Bird seed	ACME	10	1
+–––––-+––––-+––––+–––-+

Analysis

This	example	displays	the	items	in	order	number	20005.	Order	items	are	stored	in	the
orderitems	table.	Each	product	is	stored	by	its	product	ID,	which	refers	to	a	product	in
the	products	table.	The	products	are	linked	to	the	appropriate	vendor	in	the	vendors
table	by	the	vendor	ID,	which	is	stored	with	each	product	record.	The	FROM	clause	here
lists	the	three	tables,	and	the	WHERE	clause	defines	both	of	those	join	conditions.	An
additional	WHERE	condition	is	then	used	to	filter	just	the	items	for	order	20005.

Caution:	Performance	Considerations

Oracle	processes	joins	at	runtime,	relating	each	table	as	specified.	This	process	can
become	very	resource	intensive,	so	be	careful	not	to	join	tables	unnecessarily.	The
more	tables	you	join,	the	more	performance	degrades.

Now	would	be	a	good	time	to	revisit	the	following	example	from	Lesson	14,	“Working
with	Subqueries.”	As	you	will	recall,	this	SELECT	statement	returns	a	list	of	customers
who	ordered	product	TNT2:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
WHERE	cust_id	IN	(SELECT	cust_id
																		FROM	orders
																		WHERE	order_num	IN	(SELECT	order_num
																																						FROM	orderitems
																																						WHERE	prod_id	=	‘TNT2’));

As	mentioned	in	Lesson	14,	subqueries	might	not	always	the	most	efficient	way	to
perform	complex	SELECT	operations,	and	so	as	promised,	here	is	the	same	query	using
joins:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers,	orders,	orderitems

WHERE	customers.cust_id	=	orders.cust_id
		AND	orderitems.order_num	=	orders.order_num
		AND	prod_id	=	‘TNT2’;

Output
Click	here	to	view	code	image

+–––––-+––––—+
|	cust_name						|	cust_contact	|
+–––––-+––––—+
|	Coyote	Inc.				|	Y	Lee								|
|	Yosemite	Place	|	Y	Sam								|
+–––––-+––––—+

Analysis

As	explained	in	Lesson	14,	returning	the	data	needed	in	this	query	requires	the	use	of	three
tables.	But	instead	of	using	them	within	nested	subqueries,	here	two	joins	are	used	to
connect	the	tables.	There	are	three	WHERE	clause	conditions	here.	The	first	two	connect
the	tables	in	the	join,	and	the	last	one	filters	the	data	for	product	TNT2.

Here	is	the	same	statement,	this	time	with	the	join	implemented	in	the	FROM	clause:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers
INNER	JOIN	orders	ON	customers.cust_id	=	orders.cust_id
INNER	JOIN	orderitems	ON	orderitems.order_num	=	orders.order_num
WHERE	prod_id	=	‘TNT2’;

Analysis

Once	again,	three	tables	are	joined.	FROM	specifies	the	first	table,	and	then	two	INNER
JOIN	statements	join	the	additional	tables,	with	an	ON	clause	defining	their	relationship.
The	output	would	be	exactly	the	same	as	in	the	preceding	example.

Tip:	It	Pays	to	Experiment

As	you	can	see,	there	is	often	more	than	one	way	to	perform	any	given	SQL
operation,	and	there	is	rarely	a	definitive	right	or	wrong	way.	Performance	can	be
affected	by	the	type	of	operation,	the	amount	of	data	in	the	tables,	whether	indexes
and	keys	are	present,	and	a	whole	slew	of	other	criteria.	Therefore,	it	is	often	worth
experimenting	with	different	selection	mechanisms	to	find	the	one	that	works	best
for	you.

Summary
Joins	are	one	of	the	most	important	and	powerful	features	in	SQL,	and	using	them
effectively	requires	a	basic	understanding	of	relational	database	design.	In	this	lesson,	you
learned	some	of	the	basics	of	relational	database	design	as	an	introduction	to	learning
about	joins.	You	also	learned	how	to	create	an	equijoin	(also	known	as	an	inner	join),
which	is	the	most	commonly	used	form	of	join.	In	the	next	lesson,	you’ll	learn	how	to
create	other	types	of	joins.

Lesson	16.	Creating	Advanced	Joins

In	this	lesson,	you’ll	learn	all	about	additional	join	types—what	they	are	and	how	to	use
them.	You’ll	also	learn	how	to	use	table	aliases	and	how	to	use	aggregate	functions	with
joined	tables.

Using	Table	Aliases
Back	in	Lesson	10,	“Creating	Calculated	Fields,”	you	learned	how	to	use	aliases	to	refer	to
retrieved	table	columns.	The	syntax	to	alias	a	column	looks	like	this:

Input
Click	here	to	view	code	image

SELECT	RTrim(vend_name)	||	‘,	(‘	||	RTrim(vend_country)	||	‘)’	AS	vend_title
FROM	vendors
ORDER	BY	vend_name;

In	addition	to	using	aliases	for	column	names	and	calculated	fields,	SQL	also	enables	you
to	alias	table	names.	There	are	two	primary	reasons	to	do	this:

	To	shorten	the	SQL	syntax

	To	enable	multiple	uses	of	the	same	table	within	a	single	SELECT	statement

Take	a	look	at	the	following	SELECT	statement.	It	is	basically	the	same	statement	as	an
example	used	in	the	previous	lesson,	but	it	has	been	modified	to	use	aliases:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers	c,	orders	o,	orderitems	oi
WHERE	c.cust_id	=	o.cust_id
		AND	oi.order_num	=	o.order_num
		AND	prod_id	=	‘TNT2’;

Analysis

Notice	that	the	three	tables	in	the	FROM	clauses	all	have	aliases.	customers	c
establishes	c	as	an	alias	for	customers,	and	so	on.	This	enables	you	to	use	the
abbreviated	c	instead	of	the	full	text	customers.	In	this	example,	the	table	aliases	were
used	only	in	the	WHERE	clause,	but	aliases	are	not	limited	to	just	WHERE.	You	can	use
aliases	in	the	SELECT	list,	the	ORDER	BY	clause,	and	in	any	other	part	of	the	statement
as	well.

Note:	No	

Unlike	most	other	DBMSs,	Oracle	does	not	use	the	AS	keyword	for	table	aliases;
thus,	customers	c	is	correct,	but	customers	AS	c	would	throw	an	error.

It	is	also	worth	noting	that	table	aliases	are	only	used	during	query	execution.	Unlike
column	aliases,	table	aliases	are	never	returned	to	the	client.

Using	Different	Join	Types
So	far,	you	have	used	only	simple	joins	known	as	inner	joins	or	equijoins.	You’ll	now	take
a	look	at	three	additional	join	types:	the	self	join,	the	natural	join,	and	the	outer	join.

Self	Joins
As	mentioned	earlier,	one	of	the	primary	reasons	to	use	table	aliases	is	to	be	able	to	refer
to	the	same	table	more	than	once	in	a	single	SELECT	statement.	An	example	will
demonstrate	this.

Suppose	that	a	problem	was	found	with	a	product	(item	id	DTNTR),	and	you	therefore
wanted	to	know	all	the	products	made	by	the	same	vendor	to	determine	whether	the
problem	applied	to	them,	too.	This	query	requires	that	you	first	find	out	which	vendor
creates	item	DTNTR,	and	next	find	which	other	products	are	made	by	the	same	vendor.
The	following	is	one	way	to	approach	this	problem:

Input
Click	here	to	view	code	image

SELECT	prod_id,	prod_name
FROM	products
WHERE	vend_id	=	(SELECT	vend_id
																	FROM	products
																	WHERE	prod_id	=	‘DTNTR’);

Output
+–––+–––––-+
|	prod_id	|	prod_name						|
+–––+–––––-+
DTNTR	Detonator
FB	Bird seed
FC	Carrots
SAFE	Safe
SLING	Sling
TNT1	TNT (1 stick)
TNT2	TNT (5 sticks)
+–––+–––––-+

Analysis

This	first	solution	uses	subqueries.	The	inner	SELECT	statement	does	a	simple	retrieval	to
return	the	vend_id	of	the	vendor	that	makes	item	DTNTR.	That	ID	is	the	one	used	in	the
WHERE	clause	of	the	outer	query	so	all	items	produced	by	that	vendor	are	retrieved.	(You
learned	all	about	subqueries	in	Lesson	14,	“Working	with	Subqueries.”	Refer	to	that
lesson	for	more	information.)

Now	look	at	the	same	query	using	a	join,	and	I’ll	present	the	code	using	both	join	formats:

Input

Click	here	to	view	code	image

SELECT	p1.prod_id,	p1.prod_name
FROM	products	p1,	products	p2
WHERE	p1.vend_id	=	p2.vend_id
		AND	p2.prod_id	=	‘DTNTR’;

Input
Click	here	to	view	code	image

SELECT	p1.prod_id,	p1.prod_name
FROM	products	p1
INNER	JOIN	products	p2	ON	p1.vend_id	=	p2.vend_id
WHERE	p2.prod_id	=	‘DTNTR’;

Output
+–––+–––––-+
|	prod_id	|	prod_name						|
+–––+–––––-+
DTNTR	Detonator
FB	Bird seed
FC	Carrots
SAFE	Safe
SLING	Sling
TNT1	TNT (1 stick)
TNT2	TNT (5 sticks)
+–––+–––––-+

Analysis

The	two	tables	needed	in	this	query	are	actually	the	same	table,	and	so	the	products
table	appears	twice.	Although	this	is	perfectly	legal,	any	references	to	table	products
would	be	ambiguous	because	Oracle	could	not	know	to	which	instance	of	the	products
tables	you	are	referring.

To	resolve	this	problem,	table	aliases	are	used.	The	first	occurrence	of	products	has	an
alias	of	p1,	and	the	second	has	an	alias	of	p2.	Now	those	aliases	can	be	used	as	table
names.	The	SELECT	statement,	for	example,	uses	the	p1	prefix	to	explicitly	state	the	full
name	of	the	desired	columns.	If	it	did	not,	Oracle	would	return	an	error	because	there	are
two	columns	named	prod_id	and	prod_name.	It	cannot	know	which	one	you	want
(even	though,	in	truth,	they	are	one	and	the	same).	The	WHERE	or	ON	clauses	join	the
tables	(by	matching	vend_id	in	p1	to	vend_id	in	p2),	and	results	are	filtered	by
prod_id	in	the	second	table	to	return	only	the	desired	data.

Tip:	Self	Joins	Instead	of	Subqueries

Self	joins	are	often	used	to	replace	statements	using	subqueries	that	retrieve	data
from	the	same	table	as	the	outer	statement.	Although	the	end	result	is	the	same,
sometimes	these	joins	execute	far	more	quickly	than	they	do	subqueries.	It	is
usually	worth	experimenting	with	both	to	determine	which	performs	better.

Natural	Joins
Whenever	tables	are	joined,	at	least	one	column	appears	in	more	than	one	table	(the
columns	being	joined).	Standard	joins	(the	inner	joins	you	learned	about	in	the	previous
lesson)	return	all	data,	even	multiple	occurrences	of	the	same	column.	A	natural	join
simply	eliminates	those	multiple	occurrences	so	only	one	of	each	column	is	returned.

How	does	it	do	this?	The	answer	is	it	doesn’t—you	do	it.	A	natural	join	is	a	join	in	which
you	select	only	columns	that	are	unique.	This	is	typically	done	using	a	wildcard	(SELECT
*)	for	one	table	and	explicit	subsets	of	the	columns	for	all	other	tables.	The	following	is
an	example,	once	again,	presented	using	both	join	syntaxes:

Input
Click	here	to	view	code	image

SELECT	c.*,	o.order_num,	o.order_date,
							oi.prod_id,	oi.quantity,	OI.item_price
FROM	customers	c,	orders	o,	orderitems	oi
WHERE	c.cust_id	=	o.cust_id
		AND	oi.order_num	=	o.order_num
		AND	prod_id	=	‘FB’;

Input
Click	here	to	view	code	image

SELECT	c.*,	o.order_num,	o.order_date,
							oi.prod_id,	oi.quantity,	OI.item_price
FROM	customers	c
INNER	JOIN	orders	o	ON	c.cust_id	=	o.cust_id
INNER	JOIN	orderitems	oi	ON	oi.order_num	=	o.order_num
WHERE	prod_id	=	‘FB’;

Analysis

In	these	examples,	a	wildcard	is	used	for	the	first	table	only,	and	so	all	columns	from	c
(the	customers	table)	are	returned.	All	other	columns	are	explicitly	listed	so	no
duplicate	columns	are	retrieved.

The	truth	is,	every	inner	join	you	have	created	thus	far	is	actually	a	natural	join,	and	you
will	probably	never	even	need	an	inner	join	that	is	not	a	natural	join.

Outer	Joins
Most	joins	relate	rows	in	one	table	with	rows	in	another.	But	occasionally,	you	want	to
include	rows	that	have	no	related	rows.	For	example,	you	might	use	joins	to	accomplish
the	following	tasks:

	Count	how	many	orders	each	customer	placed,	including	customers	who	have	yet	to
place	an	order

	List	all	products	with	order	quantities,	including	products	not	ordered	by	anyone

	Calculate	average	sale	sizes,	taking	into	account	customers	who	have	not	yet	placed

an	order

In	each	of	these	examples,	the	join	includes	table	rows	that	have	no	associated	rows	in	the
related	table.	This	type	of	join	is	called	an	outer	join.

The	following	SELECT	statement	is	a	simple	inner	join.	It	retrieves	a	list	of	all	customers
and	their	orders:

Input
Click	here	to	view	code	image

SELECT	customers.cust_id,	orders.order_num
FROM	customers
INNER	JOIN	orders	ON	customers.cust_id	=	orders.cust_id;

Outer	join	syntax	is	similar.	To	retrieve	a	list	of	all	customers,	including	those	who	have
placed	no	orders,	you	can	do	the	following:

Input
Click	here	to	view	code	image

SELECT	customers.cust_id,	orders.order_num
FROM	customers
LEFT	OUTER	JOIN	orders	ON	customers.cust_id	=	orders.cust_id;

Output
+–––+–––—+
|	cust_id	|	order_num	|
+–––+–––—+
10001	20005
10001	20009
10002	
10003	20006
10004	20007
10005	20008
+–––+–––—+

Analysis

Like	the	inner	join	shown	in	the	previous	lesson,	this	SELECT	statement	uses	the
keywords	OUTER	JOIN	to	specify	the	join	type	(instead	of	specifying	it	in	the	WHERE
clause).	But	unlike	inner	joins,	which	relate	rows	in	both	tables,	outer	joins	also	include
rows	with	no	related	rows.	When	using	OUTER	JOIN	syntax,	you	must	use	the	RIGHT
or	LEFT	keywords	to	specify	the	table	from	which	to	include	all	rows	(RIGHT	for	the	one
on	the	right	of	OUTER	JOIN,	and	LEFT	for	the	one	on	the	left).	The	previous	example
uses	LEFT	OUTER	JOIN	to	select	all	the	rows	from	the	table	on	the	left	in	the	FROM
clause	(the	customers	table).	To	select	all	the	rows	from	the	table	on	the	right,	you	use
a	RIGHT	OUTER	JOIN,	as	shown	in	this	example:

Input
Click	here	to	view	code	image

SELECT	customers.cust_id,	orders.order_num
FROM	customers
RIGHT	OUTER	JOIN	orders	ON	orders.cust_id	=	customers.cust_id;

Note:	No	 	Or	

Oracle	does	not	support	the	use	of	the	simplified	*=	and	=*	OUTER	JOIN	syntax
popularized	by	other	DBMSs.

Tip:	Outer	Join	Types

There	are	two	basic	forms	of	outer	joins—the	left	outer	join	and	the	right	outer	join.
The	only	difference	between	them	is	the	order	of	the	tables	they	are	relating.	In
other	words,	a	left	outer	join	can	be	turned	into	a	right	outer	join	simply	by
reversing	the	order	of	the	tables	in	the	FROM	or	WHERE	clause.	As	such,	the	two
types	of	outer	join	can	be	used	interchangeably,	and	the	decision	about	which	one	to
use	is	based	purely	on	convenience.

Using	Joins	with	Aggregate	Functions
As	you	learned	in	Lesson	12,	“Summarizing	Data,”	aggregate	functions	are	used	to
summarize	data.	Although	all	the	examples	of	aggregate	functions	thus	far	only
summarized	data	from	a	single	table,	these	functions	can	also	be	used	with	joins.

To	demonstrate	this,	let’s	look	at	an	example.	You	want	to	retrieve	a	list	of	all	customers
and	the	number	of	orders	that	each	has	placed.	The	following	code	uses	the	COUNT()
function	to	achieve	this:

Input
Click	here	to	view	code	image

SELECT	customers.cust_name,
							COUNT(orders.order_num)	AS	num_ord
FROM	customers
INNER	JOIN	orders	ON	customers.cust_id	=	orders.cust_id
GROUP	BY	customers.cust_name;

Output
+–––––-+–––+
|	cust_name						|	num_ord	|
+–––––-+–––+
Coyote Inc.	2
Wascals	1
Yosemite Place	1
E Fudd	1
+–––––-+–––+

Analysis

This	SELECT	statement	uses	INNER	JOIN	to	relate	the	customers	and	orders
tables	to	each	other.	The	GROUP	BY	clause	groups	the	data	by	customer,	and	so	the

function	call	COUNT(orders.order_num)	counts	the	number	of	orders	for	each
customer	and	returns	it	as	num_ord.

Aggregate	functions	can	be	used	just	as	easily	with	other	join	types.	See	the	following
example:

Input
Click	here	to	view	code	image

SELECT	customers.cust_name,
							COUNT(orders.order_num)	AS	num_ord
FROM	customers
LEFT	OUTER	JOIN	orders	ON	customers.cust_id	=	orders.cust_id
GROUP	BY	customers.cust_name;

Output
+–––––-+–––+
|	cust_name						|	num_ord	|
+–––––-+–––+
Coyote Inc.	2
Mouse House	0
Wascals	1
Yosemite Place	1
E Fudd	1
+–––––-+–––+

Analysis

This	example	uses	a	left	outer	join	to	include	all	customers,	even	those	who	have	not
placed	any	orders.	The	results	show	that	customer	Mouse	House	(with	0	orders)	is	also
included	this	time.

Using	Joins	and	Join	Conditions
Before	wrapping	up	this	two-lesson	discussion	on	joins,	it	is	worthwhile	to	summarize
some	key	points	regarding	joins	and	their	use:

	Pay	careful	attention	to	the	type	of	join	being	used.	More	often	than	not,	you’ll	want
an	inner	join,	but	there	are	often	valid	uses	for	outer	joins,	too.

	Make	sure	you	use	the	correct	join	condition,	or	you’ll	return	incorrect	data.

	Make	sure	you	always	provide	a	join	condition,	or	you’ll	end	up	with	the	Cartesian
product.

	You	may	include	multiple	tables	in	a	join	and	even	have	different	join	types	for
each.	Although	this	is	legal	and	often	useful,	make	sure	you	test	each	join	separately
before	testing	them	together.	This	makes	troubleshooting	far	simpler.

Summary
This	lesson	was	a	continuation	of	the	previous	lesson	on	joins.	This	lesson	started	by
teaching	you	how	and	why	to	use	aliases,	and	then	continued	with	a	discussion	on
different	join	types	and	various	forms	of	syntax	used	with	each.	You	also	learned	how	to
use	aggregate	functions	with	joins,	and	some	important	do’s	and	don’ts	to	keep	in	mind
when	working	with	joins.

Lesson	17.	Combining	Queries

In	this	lesson,	you’ll	learn	how	to	use	the	UNION	operator	to	combine	multiple	SELECT
statements	into	one	result	set.

Understanding	Combined	Queries
Most	SQL	queries	contain	a	single	SELECT	statement	that	returns	data	from	one	or	more
tables.	Oracle	also	enables	you	to	perform	multiple	queries	(multiple	SELECT	statements)
and	return	the	results	as	a	single	query	result	set.	These	combined	queries	are	usually
known	as	unions	or	compound	queries.

There	are	basically	two	scenarios	in	which	you	would	use	combined	queries:

	To	return	similarly	structured	data	from	different	tables	in	a	single	query

	To	perform	multiple	queries	against	a	single	table	returning	the	data	as	one	query

Tip:	Combining	Queries	and	Multiple	 	Conditions

For	the	most	part,	combining	two	queries	to	the	same	table	accomplishes	the	same
thing	as	a	single	query	with	multiple	WHERE	clause	conditions.	In	other	words,	any
SELECT	statement	with	multiple	WHERE	clauses	can	also	be	specified	as	a
combined	query,	as	you’ll	see	in	the	section	that	follows.	However,	the	performance
of	each	of	the	two	techniques	can	vary	based	on	the	queries	used.	As	such,	it	is
always	good	to	experiment	to	determine	which	is	preferable	for	specific	queries.

Creating	Combined	Queries
SQL	queries	are	combined	using	the	UNION	operator.	Using	UNION,	multiple	SELECT
statements	can	be	specified,	and	their	results	can	be	combined	into	a	single	result	set.

Using	
Using	UNION	is	simple	enough.	All	you	do	is	specify	each	SELECT	statement	and	place
the	keyword	UNION	between	each.

Let’s	look	at	an	example.	You	need	a	list	of	all	products	costing	5	or	less.	You	also	want	to
include	all	products	made	by	vendors	1001	and	1002,	regardless	of	price.	Of	course,	you
can	create	a	WHERE	clause	that	will	do	this,	but	this	time	you’ll	use	a	UNION	instead.

As	just	explained,	creating	a	UNION	involves	writing	multiple	SELECT	statements.	First,
look	at	the	individual	statements:

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	prod_price	<=	5;

Output
Click	here	to	view	code	image

+–––+–––+––––+
|	vend_id	|	prod_id	|	prod_price	|
+–––+–––+––––+
1003	FC	2.5
1002	FU1	3.42
1003	SLING	4.49
1003	TNT1	2.5
+–––+–––+––––+

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	vend_id	IN	(1001,1002);

Output
Click	here	to	view	code	image

+–––+–––+––––+
|	vend_id	|	prod_id	|	prod_price	|
+–––+–––+––––+
1001	ANV01	5.99
1001	ANV02	9.99
1001	ANV03	14.99
1002	FU1	3.42
1002	OL1	8.99
+–––+–––+––––+

Analysis

The	first	SELECT	retrieves	all	products	with	a	price	of	no	more	than	5.	The	second
SELECT	uses	IN	to	find	all	products	made	by	vendors	1001	and	1002.

To	combine	these	two	statements,	do	the	following:

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	prod_price	<=	5
UNION
SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	vend_id	IN	(1001,1002);

Output
Click	here	to	view	code	image

+–––+–––+––––+
|	vend_id	|	prod_id	|	prod_price	|
+–––+–––+––––+
|				1003	|	FC						|								2.5	|

1002	FU1	3.42
1003	SLING	4.49
1003	TNT1	2.5
1001	ANV01	5.99
1001	ANV02	9.99
1001	ANV03	14.99
1002	OL1	8.99
+–––+–––+––––+

Analysis

The	preceding	statements	are	made	up	of	both	of	the	previous	SELECT	statements
separated	by	the	UNION	keyword.	UNION	instructs	Oracle	to	execute	both	SELECT
statements	and	combine	the	output	into	a	single	query	result	set.

As	a	point	of	reference,	here	is	the	same	query	using	multiple	WHERE	clauses	instead	of	a
UNION:

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	prod_price	<=	5
		OR	vend_id	IN	(1001,1002);

In	this	simple	example,	the	UNION	might	actually	be	more	complicated	than	using	a
WHERE	clause.	But	with	more	complex	filtering	conditions,	or	if	the	data	is	being
retrieved	from	multiple	tables	(and	not	just	a	single	table),	the	UNION	could	have	made
the	process	much	simpler.

	Rules
As	you	can	see,	unions	are	very	easy	to	use,	but	a	few	rules	govern	exactly	which	queries
can	be	combined:

	A	UNION	must	be	comprised	of	two	or	more	SELECT	statements,	each	separated	by
the	keyword	UNION	(so,	if	combining	four	SELECT	statements,	three	UNION
keywords	would	be	used).

	Each	query	in	a	UNION	must	contain	the	same	columns,	expressions,	or	aggregate
functions	(although	columns	need	not	be	listed	in	the	same	order).

	Column	datatypes	must	be	compatible.	They	need	not	be	the	exact	same	type,	but
they	must	be	of	a	type	that	Oracle	can	implicitly	convert	(for	example,	different
numeric	types	or	different	date	types).

Aside	from	these	basic	rules	and	restrictions,	unions	can	be	used	for	any	data	retrieval
tasks.

Including	or	Eliminating	Duplicate	Rows
Go	back	to	the	preceding	section	titled	“Using	UNION”	and	look	at	the	sample	SELECT
statements	used.	You’ll	notice	that	when	executed	individually,	the	first	SELECT
statement	returns	four	rows,	and	the	second	SELECT	statement	returns	five	rows.
However,	when	the	two	SELECT	statements	are	combined	with	a	UNION,	only	eight	rows
are	returned,	not	nine.

The	UNION	automatically	removes	any	duplicate	rows	from	the	query	result	set	(in	other
words,	it	behaves	just	as	multiple	WHERE	clause	conditions	in	a	single	SELECT	would).
Because	vendor	1002	creates	a	product	that	costs	less	than	5,	that	row	was	returned	by
both	SELECT	statements.	When	the	UNION	was	used,	the	duplicate	row	was	eliminated.

This	is	the	default	behavior	of	UNION,	but	you	can	change	this	if	you	so	desire.	If	you	do,
in	fact,	want	all	occurrences	of	all	matches	returned,	you	can	use	UNION	ALL	instead	of
UNION.

Look	at	the	following	example:

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	prod_price	<=	5
UNION	ALL
SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	vend_id	IN	(1001,1002);

Output
Click	here	to	view	code	image

+–––+–––+––––+
|	vend_id	|	prod_id	|	prod_price	|
+–––+–––+––––+
1003	FC	2.5
1002	FU1	3.42
1003	SLING	4.49
1003	TNT1	2.5
1001	ANV01	5.99
1001	ANV02	9.99
1001	ANV03	14.99
1002	FU1	3.42
1002	OL1	8.99
+–––+–––+––––+

Analysis

Using	UNION	ALL,	Oracle	does	not	eliminate	duplicates.	Therefore,	the	preceding
example	returns	nine	rows,	one	of	them	occurring	twice.

Tip:	 	versus	

The	beginning	of	this	lesson	said	that	UNION	almost	always	accomplishes	the	same
thing	as	multiple	WHERE	conditions.	UNION	ALL	is	the	form	of	UNION	that
accomplishes	what	cannot	be	done	with	WHERE	clauses.	If	you	do,	in	fact,	want	all
occurrences	of	matches	for	every	condition	(including	duplicates),	you	must	use
UNION	ALL	and	not	WHERE.

Sorting	Combined	Query	Results
SELECT	statement	output	is	sorted	using	the	ORDER	BY	clause.	When	combining	queries
with	a	UNION,	only	one	ORDER	BY	clause	may	be	used,	and	it	must	occur	after	the	final
SELECT	statement.	There	is	very	little	point	in	sorting	part	of	a	result	set	one	way	and
part	another	way,	and	so	multiple	ORDER	BY	clauses	are	not	allowed.

The	following	example	sorts	the	results	returned	by	the	previously	used	UNION:

Input
Click	here	to	view	code	image

SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	prod_price	<=	5
UNION
SELECT	vend_id,	prod_id,	prod_price
FROM	products
WHERE	vend_id	IN	(1001,1002)
ORDER	BY	vend_id,	prod_price;

Output
Click	here	to	view	code	image

+–––+–––+––––+
|	vend_id	|	prod_id	|	prod_price	|
+–––+–––+––––+
1001	ANV01	5.99
1001	ANV02	9.99
1001	ANV03	14.99
1002	FU1	3.42
1002	OL1	8.99
1003	TNT1	2.5
1003	FC	2.5
1003	SLING	4.49
+–––+–––+––––+

Analysis

This	UNION	takes	a	single	ORDER	BY	clause	after	the	final	SELECT	statement.	Even
though	the	ORDER	BY	appears	to	only	be	a	part	of	that	last	SELECT	statement,	Oracle
will	in	fact	use	it	to	sort	all	the	results	returned	by	all	the	SELECT	statements.

Note:	Combining	Different	Tables

For	the	sake	of	simplicity,	all	the	examples	in	this	lesson	combined	queries	using
the	same	table.	However,	everything	you	learned	here	also	applies	to	using	UNION
to	combine	queries	of	different	tables.

Summary
In	this	lesson,	you	learned	how	to	combine	SELECT	statements	with	the	UNION	operator.
Using	UNION,	you	can	return	the	results	of	multiple	queries	as	one	combined	query,	either
including	or	excluding	duplicates.	The	use	of	UNION	can	greatly	simplify	complex
WHERE	clauses	and	retrieving	data	from	multiple	tables.

Lesson	18.	Inserting	Data

In	this	lesson,	you	will	learn	how	to	insert	data	into	tables	using	the	SQL	INSERT
statement.

Understanding	Data	Insertion
SELECT	is	undoubtedly	the	most	frequently	used	SQL	statement	(which	is	why	the	past
15	lessons	were	dedicated	to	it).	But	there	are	three	other	frequently	used	SQL	statements
that	you	should	learn.	The	first	one	is	INSERT.	(You’ll	get	to	the	other	two,	UPDATE	and
DELETE,	in	the	next	lesson.)

As	its	name	suggests,	INSERT	is	used	to	insert	(add)	rows	to	a	database	table.	Insert	can
be	used	in	several	ways:

	To	insert	a	single	complete	row

	To	insert	a	single	partial	row

	To	insert	multiple	rows

	To	insert	the	results	of	a	query

You’ll	now	look	at	each	of	these.

Tip:	 	and	System	Security

Use	of	the	INSERT	statement	can	be	disabled	per	table	or	per	user	using	Oracle
security,	as	explained	in	Lesson	26,	“Managing	Security.”

Inserting	Complete	Rows
The	simplest	way	to	insert	data	into	a	table	is	to	use	the	basic	INSERT	syntax,	which
requires	that	you	specify	the	table	name	and	the	values	to	be	inserted	into	the	new	row.
Here	is	an	example	of	this:

Input

INSERT	INTO	Customers
VALUES(10006,
							‘Pep	E.	LaPew’,
							‘100	Main	Street’,
							‘Los	Angeles’,
							‘CA’,
							‘90046’,
							‘USA’,
							NULL,
							NULL);

Note:	No	Output

INSERT	statements	usually	generate	no	output,	but	if	you	execute	the	preceding
statement	in	Oracle	SQL	Developer,	you	should	see	a	1	row	inserted.
message.

Analysis

The	preceding	example	inserts	a	new	customer	into	the	customers	table.	The	data	to	be
stored	in	each	table	column	is	specified	in	the	VALUES	clause,	and	a	value	must	be
provided	for	every	column.	If	a	column	has	no	value	(for	example,	the	cust_contact
and	cust_email	columns),	the	NULL	value	should	be	used	(assuming	the	table	allows
no	value	to	be	specified	for	that	column).	The	columns	must	be	populated	in	the	order	in
which	they	appear	in	the	table	definition.

Although	this	syntax	is	indeed	simple,	it	is	not	at	all	safe	and	should	generally	be	avoided
at	all	costs.	The	previous	SQL	statement	is	highly	dependent	on	the	order	in	which	the
columns	are	defined	in	the	table.	It	also	depends	on	information	about	that	order	being
readily	available.	Even	if	it	is	available,	there	is	no	guarantee	that	the	columns	will	be	in
the	exact	same	order	the	next	time	the	table	is	reconstructed.	Therefore,	writing	SQL
statements	that	depend	on	specific	column	ordering	is	very	unsafe.	If	you	do	so,
something	will	inevitably	break	at	some	point.

The	safer	(and	unfortunately	more	cumbersome)	way	to	write	the	INSERT	statement	is	as
follows:

Input
Click	here	to	view	code	image

INSERT	INTO	customers(cust_id,
																						cust_name,
																						cust_address,
																						cust_city,
																						cust_state,
																						cust_zip,
																						cust_country
)
VALUES(10006,
							‘Pep	E.	LaPew’,
							‘100	Main	Street’,
							‘Los	Angeles’,
							‘CA’,
							‘90046’,
							‘USA’
);

Note:	Can’t	 	Twice

If	you	executed	this	latest	INSERT	statement,	you	would	have	seen	an	error
message	complaining	unique	constraint	violated.	This	is	because	the
cust_id	field	is	a	primary	key	and	so	every	customer	must	have	a	unique
cust_id.	As	both	examples	used	the	same	10006	value,	Oracle	can’t	accept	the
second	insertion.	You	can	simply	address	this	problem	by	using	10007	as	the
cust_id,	and	if	you	are	going	to	insert	additional	rows,	keep	incrementing	that
number.

Analysis

This	example	does	the	exact	same	thing	as	the	previous	INSERT	statement,	but	this	time,
the	column	names	are	explicitly	stated	in	parentheses	after	the	table	name.	When	the	row
is	inserted,	Oracle	matches	each	item	in	the	columns	list	with	the	appropriate	value	in	the
VALUES	list.	The	first	entry	in	VALUES	corresponds	to	the	first	specified	column	name.
The	second	value	corresponds	to	the	second	column	name,	and	so	on.

Note:	Automatic	Primary	Keys

Some	table	columns	need	unique	values;	for	example,	order	numbers,	employee
IDs,	or	(as	in	the	example	just	shown)	customer	IDs.	Rather	than	have	to	assign
unique	values	manually	each	time	a	row	is	added	(and	having	to	keep	track	of	what
value	was	last	used),	most	DBMSs	provide	a	way	to	automatically	assign	the	next
available	number	for	you	each	time	a	row	is	added	to	a	table.	This	functionality	is
known	as	auto	increment.	Unfortunately,	Oracle	only	added	support	for	auto
increment	in	version	12c;	users	of	prior	versions	(including	Oracle	Express	Edition)
can’t	use	auto	increment	and	have	to	resort	to	other	techniques	to	keep	track	of	the
next	available	identifier.	As	this	book	is	intended	to	be	used	by	Oracle	10g,	11g,
and	12c	users,	I	opted	not	to	use	Oracle’s	new	auto	increment	functionality.
However,	if	you	are	using	Oracle	12c,	feel	free	to	take	advantage	of	this	long-
awaited	enhancement.

Because	column	names	are	provided,	the	VALUES	must	match	the	specified	column
names	in	the	order	in	which	they	are	specified,	and	not	necessarily	in	the	order	that	the
columns	appear	in	the	actual	table.	The	advantage	of	this	is	that,	even	if	the	table	layout
changes,	the	INSERT	statement	still	works	correctly.	You’ll	also	notice	that	the	columns
with	NULL	values	(the	final	two)	were	not	listed	in	the	column	list	and	so	no	values	were
needed.

The	following	INSERT	statement	populates	all	the	row	columns	(just	as	before),	but	it
does	so	in	a	different	order.	Because	the	column	names	are	specified,	the	insertion	works
correctly:

Input
Click	here	to	view	code	image

INSERT	INTO	customers(cust_id,
												cust_name,
												cust_contact,
												cust_email,
												cust_address,
												cust_city,
												cust_state,
												cust_zip,
												cust_country)
VALUES(10006,
						‘Pep	E.	LaPew’,
						NULL,
						NULL,
						‘100	Main	Street’,
						‘Los	Angeles’,
						‘CA’,
						‘90046’,
						‘USA’);

Tip:	Always	Use	a	Column	List

As	a	rule,	never	use	INSERT	without	explicitly	specifying	the	column	list.	This
greatly	increases	the	probability	that	your	SQL	will	continue	to	function	in	the
event	that	table	changes	occur.

Caution:	Use	 	Carefully

Regardless	of	the	INSERT	syntax	being	used,	the	correct	number	of	VALUES	must
be	specified.	If	no	column	names	are	provided,	a	value	must	be	present	for	every
table	column.	If	column	names	are	provided,	a	value	must	be	present	for	each	listed
column.	If	none	is	present,	an	error	message	will	be	generated,	and	the	row	will	not
be	inserted.

Using	this	syntax,	you	can	also	omit	columns.	This	means	you	only	provide	values	for
some	columns,	but	not	for	others.	(You’ve	actually	already	seen	an	example	of	this:
cust_id	was	omitted	when	column	names	were	explicitly	listed.)

Caution:	Omitting	Columns

You	may	omit	columns	from	an	INSERT	operation	if	the	table	definition	so	allows.
One	of	the	following	conditions	must	exist:

	The	column	is	defined	as	allowing	NULL	values	(no	value	at	all).

	A	default	value	is	specified	in	the	table	definition.	This	means	the	default	value
will	be	used	if	no	value	is	specified.

If	you	omit	a	value	from	a	table	that	does	not	allow	NULL	values	and	does	not	have
a	default,	Oracle	generates	an	error	message,	and	the	row	is	not	inserted.

Tip:	Inserting	Multiple	Rows

Unlike	most	other	DBMSs,	Oracle	doesn’t	support	a	version	of	INSERT	that	can
insert	multiple	rows	at	once.	There	are	workarounds	(using	the	dual	table	I’ve
mentioned	previously),	but	in	practice	you’ll	probably	just	use	multiple	INSERT
statements	(as	we	did	in	the	populate.sql	file	back	in	Lesson	3,	“Working	with
Oracle”).

Inserting	Retrieved	Data
INSERT	is	usually	used	to	add	a	row	to	a	table	using	specified	values.	There	is	another
form	of	INSERT	that	can	be	used	to	insert	the	result	of	a	SELECT	statement	into	a	table.
This	is	known	as	INSERT	SELECT,	and,	as	its	name	suggests,	it	is	made	up	of	an
INSERT	statement	and	a	SELECT	statement.

Suppose	you	want	to	merge	a	list	of	customers	from	another	table	into	your	customers
table.	Instead	of	reading	one	row	at	a	time	and	inserting	it	with	INSERT,	you	can	do	the
following:

Note:	Instructions	Needed	for	the	Next	Example

The	following	example	imports	data	from	a	table	named	custnew	into	the
customers	table.	To	try	this	example,	create	a	new	table	named	custnew	using
the	CREATE	TABLE	customers	statement	in	create.sql,	and	obviously
replacing	customers	with	custnew.	Then	add	a	few	customers	of	your	own,
being	careful	to	not	use	cust_id	values	that	were	already	used	in	customers
(the	subsequent	INSERT	operation	will	fail	if	primary	key	values	are	duplicated).
The	easiest	way	to	do	this	is	just	start	the	numbers	much	higher,	perhaps	at	20000.

Input
Click	here	to	view	code	image

INSERT	INTO	customers(cust_id,
																						cust_contact,
																						cust_email,
																						cust_name,
																						cust_address,
																						cust_city,
																						cust_state,
																						cust_zip,
																						cust_country)
SELECT	cust_id,
							cust_contact,
							cust_email,
							cust_name,
							cust_address,
							cust_city,
							cust_state,
							cust_zip,
							cust_country

FROM	custnew;

Analysis

This	example	uses	INSERT	SELECT	to	import	all	the	data	from	custnew	into
customers.	Instead	of	listing	the	VALUES	to	be	inserted,	the	SELECT	statement
retrieves	them	from	custnew.	Each	column	in	the	SELECT	corresponds	to	a	column	in
the	specified	columns	list.	How	many	rows	will	this	statement	insert?	That	depends	on
how	many	rows	are	in	the	custnew	table.	If	the	table	is	empty,	no	rows	are	inserted	(and
no	error	will	be	generated	because	the	operation	is	still	valid).	If	the	table	does,	in	fact,
contain	data,	all	that	data	is	inserted	into	customers.

Tip:	Column	Names	in	

This	example	uses	the	same	column	names	in	both	the	INSERT	and	SELECT
statements	for	simplicity’s	sake,	but	there	is	no	requirement	that	the	column	names
match.	In	fact,	Oracle	does	not	even	pay	attention	to	the	column	names	returned	by
the	SELECT.	Rather,	the	column	position	is	used,	so	the	first	column	in	the
SELECT	(regardless	of	its	name)	will	be	used	to	populate	the	first	specified	table
column,	and	so	on.	This	is	very	useful	when	importing	data	from	tables	that	use
different	column	names.

The	SELECT	statement	used	in	an	INSERT	SELECT	can	include	a	WHERE	clause	to
filter	the	data	to	be	inserted.

Tip:	More	Examples

Looking	for	more	examples	of	INSERT	use?	See	the	example	table	population
scripts	used	back	in	Lesson	3	to	populate	the	example	tables	used	in	this	book.

Summary
In	this	lesson,	you	learned	how	to	use	INSERT	to	insert	rows	into	a	database	table.	You
learned	several	other	ways	to	use	INSERT,	and	why	explicit	column	specification	is
preferred.	You	also	learned	how	to	use	INSERT	SELECT	to	import	rows	from	another
table.	In	the	next	lesson,	you’ll	learn	how	to	use	UPDATE	and	DELETE	to	further
manipulate	table	data.

Lesson	19.	Updating	and	Deleting	Data

In	this	lesson,	you	will	learn	how	to	use	the	UPDATE	and	DELETE	statements	to	enable
you	to	further	manipulate	your	table	data.

Updating	Data
To	update	(modify)	data	in	a	table,	the	UPDATE	statement	is	used.	UPDATE	can	be	used	in
two	ways:

	To	update	specific	rows	in	a	table

	To	update	all	rows	in	a	table

Let’s	take	a	look	at	each	of	these	uses.

Caution:	Don’t	Omit	the	 	Clause

Special	care	must	be	exercised	when	using	UPDATE	because	it	is	all	too	easy	to
mistakenly	update	every	row	in	your	table.	Please	read	this	entire	section	on
UPDATE	before	using	this	statement.

Tip:	 	and	Security

Use	of	the	UPDATE	statement	can	be	restricted	and	controlled.	More	on	this	in
Lesson	26,	“Managing	Security.”

The	UPDATE	statement	is	very	easy	to	use—some	would	say	too	easy.	The	basic	format	of
an	UPDATE	statement	is	made	up	of	three	parts:

	The	table	to	be	updated

	The	column	names	and	their	new	values

	The	filter	condition	that	determines	which	rows	should	be	updated

Let’s	take	a	look	at	a	simple	example.	Customer	10005	now	has	an	email	address,	and	so
his	record	needs	updating.	The	following	statement	performs	this	update:

Input
Click	here	to	view	code	image

UPDATE	customers
SET	cust_email	=	‘elmer@fudd.com’
WHERE	cust_id	=	10005;

The	UPDATE	statement	always	begins	with	the	name	of	the	table	being	updated.	In	this
example,	it	is	the	customers	table.	The	SET	command	is	then	used	to	assign	the	new
value	to	a	column.	As	used	here,	the	SET	clause	sets	the	cust_email	column	to	the
specified	value:

Click	here	to	view	code	image
SET	cust_email	=	‘elmer@fudd.com’

The	UPDATE	statement	finishes	with	a	WHERE	clause	that	tells	Oracle	which	row	to
update.	Without	a	WHERE	clause,	Oracle	would	update	all	the	rows	in	the	customers
table	with	this	new	email	address—definitely	not	the	desired	effect.

Note:	No	Output

UPDATE	statements	usually	generate	no	output,	but	if	you	execute	the	preceding
statement	in	Oracle	SQL	Developer,	you	should	see	a	1	row	updated.
message.	If	more	than	one	row	was	updated,	well,	that	probably	means	that	you
omitted	(or	mistyped)	the	WHERE	clause.

Updating	multiple	columns	requires	a	slightly	different	syntax:

Input
Click	here	to	view	code	image

UPDATE	customers
SET	cust_name	=	‘The	Fudds’,
				cust_email	=	‘elmer@fudd.com’
WHERE	cust_id	=	10005;

When	updating	multiple	columns,	only	a	single	SET	command	is	used,	and	each	column
=	value	pair	is	separated	by	a	comma.	(No	comma	is	specified	after	the	last	column.)	In
this	example,	columns	cust_name	and	cust_email	will	both	be	updated	for	customer
10005.

Tip:	Using	Subqueries	in	an	 	Statement

Subqueries	may	be	used	in	UPDATE	statements,	enabling	you	to	update	columns
with	data	retrieved	with	a	SELECT	statement.	Refer	back	to	Lesson	14,	“Working
with	Subqueries,”	for	more	information	on	subqueries	and	their	uses.

To	delete	a	column’s	value,	you	can	set	it	to	NULL	(assuming	the	table	is	defined	to	allow
NULL	values).	You	can	do	this	as	follows:

Input

UPDATE	customers
SET	cust_email	=	NULL
WHERE	cust_id	=	10005;

Here	the	NULL	keyword	is	used	to	save	no	value	to	the	cust_email	column.

Deleting	Data
To	delete	(remove)	data	from	a	table,	the	DELETE	statement	is	used.	DELETE	can	be	used
in	two	ways:

	To	delete	specific	rows	from	a	table

	To	delete	all	rows	from	a	table

You’ll	now	take	a	look	at	each	of	these.

Caution:	Don’t	Omit	the	 	Clause

Special	care	must	be	exercised	when	using	DELETE	because	it	is	all	too	easy	to
mistakenly	delete	every	row	from	your	table.	Please	read	this	entire	section	on
DELETE	before	using	this	statement.

Tip:	 	and	Security

Use	of	the	DELETE	statement	can	be	restricted	and	controlled.	More	on	this	in
Lesson	26.

I	already	stated	that	UPDATE	is	very	easy	to	use.	The	good	(and	bad)	news	is	that
DELETE	is	even	easier	to	use.

The	following	statement	deletes	a	single	row	from	the	customers	table:

Input

DELETE	FROM	customers
WHERE	cust_id	=	10006;

This	statement	should	be	self-explanatory.	DELETE	FROM	requires	that	you	specify	the
name	of	the	table	from	which	to	delete	the	data.	The	WHERE	clause	filters	which	rows	to
delete.	In	this	example,	only	customer	10006	will	be	deleted.	If	the	WHERE	clause	were
omitted,	this	statement	would	have	deleted	every	customer	in	the	table.

Note:	No	Output

DELETE	statements	usually	generate	no	output,	but	if	you	execute	the	previous
statement	in	Oracle	SQL	Developer,	you	should	see	a	1	row	deleted.	message
—and	yes,	that	means	that	if	more	than	one	row	was	deleted,	you	probably	omitted
(or	mistyped)	the	WHERE	clause.

DELETE	takes	no	column	names	or	wildcard	characters.	DELETE	deletes	entire	rows,	not
columns.	To	delete	specific	columns,	use	an	UPDATE	statement	(as	shown	earlier	in	this
lesson).

Note:	Table	Contents,	Not	Tables

The	DELETE	statement	deletes	rows	from	tables,	even	all	rows	from	tables,	but
DELETE	never	deletes	the	table	itself.

Guidelines	for	Updating	and	Deleting	Data
The	UPDATE	and	DELETE	statements	used	in	the	previous	sections	all	have	WHERE
clauses,	and	there	is	a	very	good	reason	for	this.	If	you	omit	the	WHERE	clause,	the
UPDATE	or	DELETE	is	applied	to	every	row	in	the	table.	In	other	words,	if	you	execute	an
UPDATE	without	a	WHERE	clause,	every	row	in	the	table	is	updated	with	the	new	values.
Similarly,	if	you	execute	DELETE	without	a	WHERE	clause,	all	the	contents	of	the	table
are	deleted.

Here	are	some	best	practices	that	many	SQL	programmers	follow:

	Never	execute	an	UPDATE	or	a	DELETE	without	a	WHERE	clause	unless	you	really
do	intend	to	update	and	delete	every	row.

	Make	sure	every	table	has	a	primary	key	(refer	to	Lesson	15,	“Joining	Tables,”	if
you	have	forgotten	what	this	is),	and	use	it	as	the	WHERE	clause	whenever	possible.
(You	may	specify	individual	primary	keys,	multiple	values,	or	value	ranges.)

	Before	you	use	a	WHERE	clause	with	an	UPDATE	or	a	DELETE,	first	test	it	with	a
SELECT	to	make	sure	it	is	filtering	the	right	records—it	is	far	too	easy	to	write
incorrect	WHERE	clauses.

	Use	database-enforced	referential	integrity	(refer	to	Lesson	15	for	this	one,	too)	so
Oracle	will	not	allow	the	deletion	of	rows	that	have	data	in	other	tables	related	to
them.

Caution:	Use	with	Caution

The	bottom	line	is	that	Oracle	has	no	Undo	button.	Be	very	careful	using	UPDATE
and	DELETE,	or	you’ll	find	yourself	updating	and	deleting	the	wrong	data.

Summary
In	this	lesson,	you	learned	how	to	use	the	UPDATE	and	DELETE	statements	to	manipulate
the	data	in	your	tables.	You	learned	the	syntax	for	each	of	these	statements,	as	well	as	the
inherent	dangers	they	expose.	You	also	learned	why	WHERE	clauses	are	so	important	in
UPDATE	and	DELETE	statements,	and	you	were	given	guidelines	that	should	be	followed
to	help	ensure	that	data	does	not	get	damaged	inadvertently.

Lesson	20.	Creating	and	Manipulating	Tables

In	this	lesson,	you’ll	learn	the	basics	of	table	creation,	alteration,	and	deletion.

Creating	Tables
Oracle	PL/SQL	statements	are	not	used	just	for	table	data	manipulation.	Indeed,	SQL
statements	can	be	used	to	perform	all	database	and	table	operations,	including	the	creation
and	manipulation	of	tables	themselves.

There	are	generally	two	ways	to	create	database	tables:

	Using	a	database	client	(like	the	ones	discussed	in	Lesson	2,	“Getting	Started	with
Oracle	and	PL/SQL”)	that	can	be	used	to	create	and	manage	database	tables
interactively

	Manipulating	tables	directly	with	Oracle	PL/SQL	statements

To	create	tables	programmatically,	the	CREATE	TABLE	SQL	statement	is	used.	It	is
worth	noting	that	when	you	use	interactive	tools,	you	are	actually	using	Oracle	SQL
statements.	Instead	of	your	writing	these	statements,	however,	the	interface	generates	and
executes	the	SQL	seamlessly	for	you	(the	same	is	true	for	changes	to	existing	tables).

Tip:	Additional	Examples

For	additional	examples	of	table	creation	scripts,	see	the	code	used	to	create	the
sample	tables	used	in	this	book.

Note:	Just	the	Basics

Oracle	supports	a	vast	array	of	table	creation	options,	far	more	than	a	single	lesson
can	do	justice	to.	In	this	lesson,	we	cover	the	basics,	just	so	you	can	get	a	feel	for
what’s	involved	in	table	creation,	and	so	that	the	accompanying	table	creation
scripts	make	sense.	To	learn	more	about	all	that	CREATE	TABLE	can	do,	you’ll
want	to	consult	the	Oracle	documentation.

The	Basics	of	Table	Creation
To	create	a	table	using	CREATE	TABLE,	you	must	specify	the	following	information:

	The	name	of	the	new	table	specified	after	the	keywords	CREATE	TABLE

	The	name	and	definition	of	the	table	columns	separated	by	commas

The	CREATE	TABLE	statement	may	also	include	other	keywords	and	options,	but	at	a
minimum	you	need	the	table	name	and	column	details.	The	following	Oracle	SQL
statement	creates	the	customers	table	used	throughout	this	book:

Input
Click	here	to	view	code	image

–––––––––––––––
—	Create	customers	table
–––––––––––––––
CREATE	TABLE	customers
(
		cust_id						int							NOT	NULL	,
		cust_name				char(50)		NOT	NULL	,
		cust_address	char(50)		NULL	,
		cust_city				char(50)		NULL	,
		cust_state			char(5)			NULL	,
		cust_zip					char(10)		NULL	,
		cust_country	char(50)		NULL	,
		cust_contact	char(50)		NULL	,
		cust_email			char(255)	NULL
);

Analysis

The	first	few	lines	in	this	example	are	comments,	and	are	thus	ignored	by	Oracle.	The	new
table	name	is	specified	immediately	following	the	CREATE	TABLE	keywords.	The	actual
table	definition	(all	the	columns)	is	enclosed	within	parentheses.	The	columns	themselves
are	separated	by	commas.	This	particular	table	is	made	up	of	nine	columns.	Each	column
definition	starts	with	the	column	name	(which	must	be	unique	within	the	table),	followed
by	the	column’s	datatype.	(Refer	to	Lesson	1,	“Understanding	SQL,”	for	an	explanation	of
datatypes.)

What	are	not	in	the	previous	CREATE	TABLE	statement	are	the	primary	and	foreign	key
definitions.	Although	it	is	possible	to	define	primary	keys	at	table	creation	time,	the	code
is	often	cleaner	and	easier	to	maintain	when	those	are	added	after	table	creation.	We’ll
revisit	this	when	we	introduce	ALTER	TABLE	shortly.

Tip:	Statement	Formatting

As	you	may	recall,	white	space	is	ignored	in	SQL	statements.	Statements	can	be
typed	on	one	long	line	or	broken	up	over	many	lines.	It	makes	no	difference	at	all.
This	enables	you	to	format	your	SQL	as	best	suits	you.	The	preceding	CREATE
TABLE	statement	is	a	good	example	of	SQL	statement	formatting—the	code	is
specified	over	multiple	lines,	with	the	column	definitions	indented	for	easier
reading	and	editing.	Formatting	your	SQL	in	this	way	is	entirely	optional,	but
highly	recommended.

Working	with	 	Values
Back	in	Lesson	6,	“Filtering	Data,”	you	learned	that	NULL	values	are	no	values	or	the	lack
of	a	value.	A	column	that	allows	NULL	values	also	allows	rows	to	be	inserted	with	no
value	at	all	in	that	column.	A	column	that	does	not	allow	NULL	values	does	not	accept
rows	with	no	value—in	other	words,	that	column	will	always	be	required	when	rows	are
inserted	or	updated.

Every	table	column	is	either	a	NULL	column	or	a	NOT	NULL	column,	and	that	state	is
specified	in	the	table	definition	at	creation	time.	Take	a	look	at	the	following	example:

Input
Click	here	to	view	code	image

–––––––––––––––
—	Create	orders	table
–––––––––––––––
CREATE	TABLE	orders
(
		order_num		int		NOT	NULL	,
		order_date	date	NOT	NULL	,
		cust_id				int		NOT	NULL
);

Analysis

This	statement	creates	the	orders	table	used	throughout	this	book.	orders	contains
three	columns:	order	number,	order	date,	and	the	customer	ID.	All	three	columns	are
required,	and	so	each	contains	the	keyword	NOT	NULL.	This	prevents	the	insertion	of
columns	with	no	value.	If	someone	tries	to	insert	no	value,	an	error	will	be	returned,	and
the	insertion	will	fail.

This	next	example	creates	a	table	with	a	mixture	of	NULL	and	NOT	NULL	columns:

Input
Click	here	to	view	code	image

–––––––––––––––
—	Create	vendors	table
–––––––––––––––
CREATE	TABLE	vendors
(
		vend_id						int						NOT	NULL,
		vend_name				char(50)	NOT	NULL	,
		vend_address	char(50)	NULL	,
		vend_city				char(50)	NULL	,
		vend_state			char(5)		NULL	,
		vend_zip					char(10)	NULL	,
		vend_country	char(50)	NULL
);

Analysis

This	statement	creates	the	vendors	table	used	throughout	this	book.	The	vendor	ID	and
vendor	name	columns	are	both	required,	and	are,	therefore,	specified	as	NOT	NULL.	The
five	remaining	columns	all	allow	NULL	values,	and	so	NOT	NULL	is	not	specified.	NULL
is	the	default	setting,	so	if	NOT	NULL	is	not	specified,	NULL	is	assumed.

Caution:	Understanding	

Don’t	confuse	NULL	values	with	empty	strings.	A	NULL	value	is	the	lack	of	a
value;	it	is	not	an	empty	string.	If	you	were	to	specify	''	(two	single	quotes	with
nothing	in	between	them),	that	would	be	allowed	in	a	NOT	NULL	column.	An
empty	string	is	a	valid	value;	it	is	not	no	value.	NULL	values	are	specified	with	the
keyword	NULL,	not	with	an	empty	string.

Specifying	Default	Values
Oracle	allows	you	to	specify	default	values	to	be	used	if	no	value	is	specified	when	a	row
is	inserted.	Default	values	are	specified	using	the	DEFAULT	keyword	in	the	column
definitions	in	the	CREATE	TABLE	statement.

Look	at	the	following	example	(not	the	one	we	actually	use	in	this	book):

Input
Click	here	to	view	code	image

–––––––––––––––
—	Create	orderitems	table
–––––––––––––––
CREATE	TABLE	orderitems
(
		order_num		int										NOT	NULL	,
		order_item	int										NOT	NULL	,
		prod_id				char(10)					NOT	NULL	,
		quantity			int										DEFAULT	1	NOT	NULL	,
		item_price	decimal(8,2)	NOT	NULL
);

Analysis

This	statement	creates	the	orderitems	table	that	contains	the	individual	items	that
make	up	an	order.	(The	order	itself	is	stored	in	the	orders	table.)	The	quantity
column	contains	the	quantity	for	each	item	in	an	order.	In	this	example,	adding	the	text
DEFAULT	1	to	the	column	description	instructs	Oracle	to	use	a	quantity	of	1	if	no
quantity	is	specified.

Tip:	Using	 	Instead	of	 	Values

Many	database	developers	use	DEFAULT	values	instead	of	NULL	columns,
especially	in	columns	that	will	be	used	in	calculations	or	data	groupings.

Updating	Tables
To	update	table	definitions,	the	ALTER	TABLE	statement	is	used,	but	ideally,	tables
should	never	be	altered	after	they	contain	data.	You	should	spend	sufficient	time
anticipating	future	needs	during	the	table	design	process	so	extensive	changes	are	not
required	later	on.

To	change	a	table	using	ALTER	TABLE,	you	must	specify	the	following	information:

	The	name	of	the	table	to	be	altered	after	the	keywords	ALTER	TABLE.	(The	table
must	exist	or	an	error	will	be	generated.)

	The	list	of	changes	to	be	made.

The	following	example	adds	a	column	to	a	table:

Input

ALTER	TABLE	vendors
ADD	vend_phone	CHAR(20);

Analysis

This	statement	adds	a	column	named	vend_phone	to	the	vendors	table.	The	datatype
must	be	specified.

To	remove	this	newly	added	column,	you	can	do	the	following:

Input

ALTER	TABLE	vendors
DROP	COLUMN	vend_phone;

Primary	Keys	Revisited
As	already	explained,	primary	key	values	must	be	unique.	That	is,	every	row	in	a	table
must	have	a	unique	primary	key	value.	If	a	single	column	is	used	for	the	primary	key,	it
must	be	unique;	if	multiple	columns	are	used,	the	combination	of	them	must	be	unique.

Primary	keys	can	be	defined	within	CREATE	TABLE	statements.	However,	many
developers	prefer	to	create	their	tables	and	then	add	all	keys.	Adding	keys	is	a	table
update,	and	so	the	ALTER	TABLE	command	is	used.

Here’s	an	example:

Input
Click	here	to	view	code	image

–––––––-
—	Define	primary	keys
–––––––-
ALTER	TABLE	customers	ADD	CONSTRAINT	pk_customers
																						PRIMARY	KEY	(cust_id);
ALTER	TABLE	orderitems	ADD	CONSTRAINT	pk_orderitems
																							PRIMARY	KEY	(order_num,	order_item);
ALTER	TABLE	orders	ADD	CONSTRAINT	pk_orders
																			PRIMARY	KEY	(order_num);
ALTER	TABLE	products	ADD	CONSTRAINT	pk_products
																					PRIMARY	KEY	(prod_id);
ALTER	TABLE	vendors	ADD	CONSTRAINT	pk_vendors
																				PRIMARY	KEY	(vend_id);
ALTER	TABLE	productnotes	ADD	CONSTRAINT	pk_productnotes
																									PRIMARY	KEY	(note_id);

Analysis

The	preceding	block	of	code	is	from	our	create.sql	file,	and	it	defines	the	primary
keys	for	all	six	tables.	ALTER	TABLE	is	used	to	update	a	table,	and	ADD	CONSTRAINT
PRIMARY	KEY	specifies	that	the	table	change	is	the	addition	of	a	primary	key.	All	keys
must	be	named	with	unique	names;	here	I	used	pk_	followed	by	the	table	name.	Finally,
the	column	(or	columns)	that	comprise	the	primary	key	are	identified.

Defining	Foreign	Keys
ALTER	TABLE	is	also	used	to	define	foreign	keys.	The	following	is	the	code	used	to
define	the	foreign	keys	used	by	the	tables	in	this	book:

Input
Click	here	to	view	code	image

–––––––––––––––
—	Define	foreign	keys
–––––––––––––––
ALTER	TABLE	orderitems
						ADD	CONSTRAINT	fk_orderitems_orders	FOREIGN	KEY	(order_num)
						REFERENCES	orders	(order_num);
ALTER	TABLE	orderitems
						ADD	CONSTRAINT	fk_orderitems_products
						FOREIGN	KEY	(prod_id)	REFERENCES	products	(prod_id);
ALTER	TABLE	orders
						ADD	CONSTRAINT	fk_orders_customers	FOREIGN	KEY	(cust_id)
						REFERENCES	customers	(cust_id);
ALTER	TABLE	products
						ADD	CONSTRAINT	fk_products_vendors
						FOREIGN	KEY	(vend_id)	REFERENCES	vendors	(vend_id);
ALTER	TABLE	productnotes
						ADD	CONSTRAINT	fk_productnotes_products
						FOREIGN	KEY	(prod_id)	REFERENCES	products	(prod_id);

Analysis

Here	five	ALTER	TABLE	statements	are	used,	because	five	different	tables	are	being
altered.	As	we	did	when	the	primary	keys	were	defined,	ADD	CONSTRAINT	is	used	this
time	specifying	FOREIGN	KEY,	the	constraint	is	named,	and	the	impacted	table	is
defined.	Because	this	is	a	foreign	key,	we	also	need	to	define	the	table	and	column	that	it
is	dependent	on,	and	that	gets	passed	to	REFERENCES.	REFERENCES	customers
(cust_id)	means	that	the	only	values	in	this	column	are	ones	in	the	cust_id	column
in	the	customers	table.

To	make	multiple	alterations	to	a	single	table,	a	single	ALTER	TABLE	statement	could	be
used	with	each	of	the	alterations	specified	and	delimited	by	commas.

Caution:	Use	 	Carefully

Use	ALTER	TABLE	with	extreme	caution,	and	be	sure	you	have	a	complete	set	of
backups	(both	schema	and	data)	before	proceeding.	Database	table	changes	cannot
be	undone—and	if	you	add	columns	you	don’t	need,	you	might	not	be	able	to
remove	them.	Similarly,	if	you	drop	a	column	that	you	do	need,	you	might	lose	all
the	data	in	that	column.

Deleting	Tables
Deleting	tables	(actually	removing	the	entire	table,	not	just	the	contents)	is	very	easy—
arguably	too	easy.	Tables	are	deleted	using	the	DROP	TABLE	statement:

Input

DROP	TABLE	customers2;

Analysis

This	statement	deletes	the	customers2	table	(assuming	it	exists).	There	is	no
confirmation,	nor	is	there	an	undo—executing	the	statement	permanently	removes	the
table.

Renaming	Tables
To	rename	a	table,	use	the	ALTER	TABLE	statement	as	follows:

Input
Click	here	to	view	code	image

ALTER	TABLE	customers2	RENAME	TO	customers;

Analysis

RENAME	TABLE	does	just	that—it	renames	a	table.

Summary
In	this	lesson,	you	learned	several	new	SQL	statements.	CREATE	TABLE	is	used	to
create	new	tables,	ALTER	TABLE	is	used	to	change	table	columns	(or	other	objects	like
constraints	or	indexes),	and	DROP	TABLE	is	used	to	completely	delete	a	table.	These
statements	should	be	used	with	extreme	caution,	and	only	after	backups	have	been	made.
You	also	learned	about	database	engines,	defining	primary	and	foreign	keys,	and	other
important	table	and	column	options.

Lesson	21.	Using	Views

In	this	lesson,	you’ll	learn	exactly	what	views	are,	how	they	work,	and	when	they	should
be	used.	You’ll	also	see	how	views	can	be	used	to	simplify	some	of	the	SQL	operations
performed	in	earlier	lessons.

Understanding	Views
Views	are	virtual	tables.	Unlike	tables	that	contain	data,	views	simply	contain	queries	that
dynamically	retrieve	data	when	used.

The	best	way	to	understand	views	is	to	look	at	an	example.	Back	in	Lesson	15,	“Joining
Tables,”	you	used	the	following	SELECT	statement	to	retrieve	data	from	three	tables:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	customers,	orders,	orderitems
WHERE	customers.cust_id	=	orders.cust_id
		AND	orderitems.order_num	=	orders.order_num
		AND	prod_id	=	‘TNT2’;

That	query	was	used	to	retrieve	the	customers	who	had	ordered	a	specific	product.	Anyone
needing	this	data	would	have	to	understand	the	table	structure,	as	well	as	how	to	create	the
query	and	join	the	tables.	To	retrieve	the	same	data	for	another	product	(or	for	multiple
products),	the	last	WHERE	clause	would	have	to	be	modified.

Now	imagine	that	you	could	wrap	that	entire	query	in	a	virtual	table	called
productcustomers.	You	could	then	simply	do	the	following	to	retrieve	the	same	data:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	productcustomers
WHERE	prod_id	=	‘TNT2’;

This	is	where	views	come	into	play.	productcustomers	is	a	view,	and	as	a	view,	it
does	not	contain	any	actual	columns	or	data	as	a	table	would.	Instead,	it	contains	a	SQL
query—the	same	query	used	previously	to	join	the	tables	properly.

Why	Use	Views
You’ve	already	seen	one	use	for	views.	Here	are	some	other	common	uses:

	To	reuse	SQL	statements.

	To	simplify	complex	SQL	operations.	After	the	query	is	written,	it	can	be	reused
easily,	without	your	having	to	know	the	details	of	the	underlying	query	itself.

	To	expose	parts	of	a	table	instead	of	complete	tables.

	To	secure	data.	Users	can	be	given	access	to	specific	subsets	of	tables	instead	of	to
entire	tables.

	To	change	data	formatting	and	representation.	Views	can	return	data	formatted	and
presented	differently	from	their	underlying	tables.

For	the	most	part,	after	views	are	created,	they	can	be	used	in	the	same	way	as	tables.	You
can	perform	SELECT	operations,	filter	and	sort	data,	join	views	to	other	views	or	tables,
and	possibly	even	add	and	update	data.	(There	are	some	restrictions	on	this	last	item.	More
on	that	in	a	moment.)

The	important	thing	to	remember	is	views	are	just	that—views	into	data	stored	elsewhere.
Views	contain	no	data	themselves,	so	the	data	they	return	is	retrieved	from	other	tables.
When	data	is	added	or	changed	in	those	tables,	the	views	return	that	changed	data.

Caution:	Performance	Issues

Because	views	contain	no	data,	any	retrieval	needed	to	execute	a	query	must	be
processed	every	time	the	view	is	used.	If	you	create	complex	views	with	multiple
joins	and	filters,	or	if	you	nest	views,	you	may	find	that	performance	is	dramatically
degraded.	Be	sure	you	test	execution	before	deploying	applications	that	use	views
extensively.

View	Rules	and	Restrictions
Here	are	some	of	the	most	common	rules	and	restrictions	governing	view	creation	and
usage:

	Like	tables,	views	must	be	uniquely	named.	(They	cannot	be	named	with	the	name
of	any	other	table	or	view.)

	There	is	no	limit	to	the	number	of	views	that	can	be	created.

	To	create	views,	you	must	have	security	access.	This	is	usually	granted	by	the
database	administrator.

	Views	can	be	nested;	that	is,	a	view	may	be	built	using	a	query	that	retrieves	data
from	another	view.

	ORDER	BY	may	be	used	in	a	view,	but	it	will	be	overridden	if	ORDER	BY	is	also
used	in	the	SELECT	that	retrieves	data	from	the	view.

	Views	cannot	be	indexed,	nor	can	they	have	triggers	or	default	values	associated
with	them.

	Views	can	be	used	in	conjunction	with	tables;	for	example,	to	create	a	SELECT
statement	which	joins	a	table	and	a	view.

Using	Views
So	now	that	you	know	what	views	are	(and	the	rules	and	restrictions	that	govern	them),
let’s	look	at	view	creation:

	Views	are	created	using	the	CREATE	VIEW	statement.

	To	remove	a	view,	the	DROP	statement	is	used.	The	syntax	is	simply	DROP	VIEW
viewname;.

	To	update	a	view,	you	may	use	the	DROP	statement	and	then	the	CREATE	statement
again,	or	just	use	CREATE	OR	REPLACE	VIEW,	which	creates	it	if	it	does	not
exist	and	replace	it	if	it	does.

Using	Views	to	Simplify	Complex	Joins
One	of	the	most	common	uses	of	views	is	to	hide	complex	SQL,	and	this	often	involves
joins.	Look	at	the	following	statement:

Input
Click	here	to	view	code	image

CREATE	VIEW	productcustomers	AS
SELECT	cust_name,	cust_contact,	prod_id
FROM	customers,	orders,	orderitems
WHERE	customers.cust_id	=	orders.cust_id
		AND	orderitems.order_num	=	orders.order_num;

Note:	No	Output

CREATE	VIEW	statements	generate	no	output,	but	if	you	execute	the	preceding
statement	in	Oracle	SQL	Developer,	you	should	see	a	view
PRODUCTCUSTOMERS	created	message.

Analysis

This	statement	creates	a	view	named	productcustomers,	which	joins	three	tables	to
return	a	list	of	all	customers	who	have	ordered	any	product.	If	you	were	to	SELECT	*
FROM	productcustomers,	you	would	list	every	customer	who	ordered	anything.

To	retrieve	a	list	of	customers	who	ordered	product	TNT2,	you	can	do	the	following:

Input
Click	here	to	view	code	image

SELECT	cust_name,	cust_contact
FROM	productcustomers
WHERE	prod_id	=	‘TNT2’;

Output
Click	here	to	view	code	image

+–––––-+––––—+
|	cust_name						|	cust_contact	|
+–––––-+––––—+
|	Coyote	Inc.				|	Y	Lee								|
|	Yosemite	Place	|	Y	Sam								|
+–––––-+––––—+

Analysis

This	statement	retrieves	specific	data	from	the	view	by	issuing	a	WHERE	clause.	When
Oracle	processes	the	request,	it	adds	the	specified	WHERE	clause	to	any	existing	WHERE
clauses	in	the	view	query	so	the	data	is	filtered	correctly.

As	you	can	see,	views	can	be	used	in	SELECT	statements	just	like	any	other	tables.	Using
them	can	greatly	simplify	the	use	of	complex	SQL	statements.	Using	views,	you	can	write
the	underlying	SQL	once	and	then	reuse	it	as	needed.

Tip:	Creating	Reusable	Views

It	is	a	good	idea	to	create	views	that	are	not	tied	to	specific	data.	For	example,	the
view	created	in	this	example	returns	customers	for	all	products,	not	just	product
TNT2	(for	which	the	view	was	first	created).	Expanding	the	scope	of	the	view
enables	it	to	be	reused,	making	it	even	more	useful.	It	also	eliminates	the	need	for
you	to	create	and	maintain	multiple	similar	views.

Using	Views	to	Reformat	Retrieved	Data
As	mentioned	previously,	another	common	use	of	views	is	for	reformatting	retrieved	data.
The	following	SELECT	statement	(from	Lesson	10,	“Creating	Calculated	Fields”)	returns
vendor	name	and	location	in	a	single	combined	calculated	column:

Input
Click	here	to	view	code	image

SELECT	RTrim(vend_name)	||	‘,	(‘	||	RTrim(vend_country)	||	‘)’	AS	vend_title
FROM	vendors
ORDER	BY	vend_name;

Output
+––––––––-+
|	vend_title														|
+––––––––-+
|	ACME	(USA)														|
|	Anvils	R	Us	(USA)							|
|	Furball	Inc.	(USA)						|
|	Jet	Set	(England)							|
|	Jouets	Et	Ours	(France)	|
|	LT	Supplies	(USA)							|
+––––––––-+

Now	suppose	that	you	regularly	needed	results	in	this	format.	Rather	than	perform	the
concatenation	each	time	it	was	needed,	you	could	create	a	view	and	use	that	instead.	To

turn	this	statement	into	a	view,	you	can	do	the	following:

Input
Click	here	to	view	code	image

CREATE	VIEW	vendorlocations	AS
SELECT	RTrim(vend_name)	||	‘,	(‘	||	RTrim(vend_country)	||	‘)’	AS	vend_title
FROM	vendors
ORDER	BY	vend_name;

Analysis

This	statement	creates	a	view	using	the	exact	same	query	as	the	previous	SELECT
statement.	To	retrieve	the	data	to	create	all	mailing	labels,	simply	do	the	following:

Input

SELECT	*
FROM	vendorlocations;

Output
+––––––––-+
|	vend_title														|
+––––––––-+
|	ACME	(USA)														|
|	Anvils	R	Us	(USA)							|
|	Furball	Inc.	(USA)						|
|	Jet	Set	(England)							|
|	Jouets	Et	Ours	(France)	|
|	LT	Supplies	(USA)							|
+––––––––-+

Using	Views	to	Filter	Unwanted	Data
Views	are	also	useful	for	applying	common	WHERE	clauses.	For	example,	you	might	want
to	define	a	customeremaillist	view	so	it	filters	out	customers	without	email
addresses.	To	do	this,	you	can	use	the	following	statement:

Input
Click	here	to	view	code	image

CREATE	VIEW	customeremaillist	AS
SELECT	cust_id,	cust_name,	cust_email
FROM	customers
WHERE	cust_email	IS	NOT	NULL;

Analysis

Obviously,	when	sending	email	to	a	mailing	list,	you	want	to	ignore	users	who	have	no
email	address.	The	WHERE	clause	here	filters	out	those	rows	that	have	NULL	values	in	the
cust_email	columns	so	they	won’t	be	retrieved.

View	customeremaillist	can	now	be	used	for	data	retrieval	just	like	any	table.

Input

SELECT	*
FROM	customeremaillist;

Output
Click	here	to	view	code	image

+–––+–––––-+–––––––+
|	cust_id	|	cust_name						|	cust_email										|
+–––+–––––-+–––––––+
10001	Coyote Inc.	ylee@coyote.com
10003	Wascals	rabbit@wascally.com
10004	Yosemite Place	sam@yosemite.com
+–––+–––––-+–––––––+

Note:	 	Clauses	and	 	Clauses

If	a	WHERE	clause	is	used	when	retrieving	data	from	the	view,	the	two	sets	of
clauses	(the	one	in	the	view	and	the	one	passed	to	it)	will	be	combined
automatically.

Using	Views	with	Calculated	Fields
Views	are	exceptionally	useful	for	simplifying	the	use	of	calculated	fields.	The	following
is	a	SELECT	statement	introduced	in	Lesson	10.	It	retrieves	the	order	items	for	a	specific
order,	calculating	the	expanded	price	for	each	item:

Input
Click	here	to	view	code	image

SELECT	prod_id,
							quantity,
							item_price,
							quantity*item_price	AS	expanded_price
FROM	orderitems
WHERE	order_num	=	20005;

Output
Click	here	to	view	code	image

+–––+–––-+––––+–––––-+
|	prod_id	|	quantity	|	item_price	|	expanded_price	|
+–––+–––-+––––+–––––-+
ANV01	10	5.99	59.90
ANV02	3	9.99	29.97
TNT2	5	10	50
FB	1	10	10
+–––+–––-+––––+–––––-+

To	create	a	view	that	can	return	the	same	data	for	any	order,	do	the	following:

Input
Click	here	to	view	code	image

CREATE	VIEW	orderitemsexpanded	AS
SELECT	order_num,
							prod_id,
							quantity,
							item_price,
							quantity*item_price	AS	expanded_price
FROM	orderitems;

To	retrieve	the	details	for	order	20005	(the	previous	output),	do	the	following:

Input

SELECT	*
FROM	orderitemsexpanded
WHERE	order_num	=	20005;

Output
Click	here	to	view	code	image

+–––—+–––+–––-+––––+–––––-+
|	order_num	|	prod_id	|	quantity	|	item_price	|	expanded_price	|
+–––—+–––+–––-+––––+–––––-+
20005	ANV01	10	5.99	59.9
20005	ANV02	3	9.99	29.97
20005	TNT2	5	10	50
20005	FB	1	10	10
+–––—+–––+–––-+––––+–––––-+

As	you	can	see,	views	are	easy	to	create	and	even	easier	to	use.	Used	correctly,	views	can
greatly	simplify	complex	data	manipulation.

Updating	Views
All	the	views	thus	far	have	been	used	with	SELECT	statements.	But	can	view	data	be
updated?	The	answer	is	that	it	depends.

As	a	rule,	yes,	views	are	updateable	(that	is,	you	can	use	INSERT,	UPDATE,	and	DELETE
on	them).	Updating	a	view	updates	the	underlying	table	(the	view,	if	you	recall,	has	no
data	of	its	own);	if	you	add	or	remove	rows	from	a	view,	you	are	actually	removing	them
from	the	underlying	table.

However,	not	all	views	are	updateable.	Basically,	if	Oracle	is	unable	to	correctly	ascertain
the	underlying	data	to	be	updated,	updates	(this	includes	inserts	and	deletes)	are	not
allowed.	In	practice,	this	means	that	if	any	of	the	following	are	used,	you’ll	not	be	able	to
update	the	view:

	Grouping	(using	GROUP	BY	and	HAVING)

	Joins

	Subqueries

	Unions

	Aggregate	functions	(Min(),	Count(),	Sum(),	and	so	forth)

	DISTINCT

	Derived	(calculated)	columns

In	other	words,	many	of	the	examples	used	in	this	lesson	would	not	be	updateable.	This
might	sounds	like	a	serious	restriction,	but	in	reality	it	isn’t	because	views	are	primarily
used	for	data	retrieval	anyway.

Tip:	Use	Views	for	Retrieval

As	a	rule,	use	views	for	data	retrieval	(SELECT	statements)	and	not	for	updates
(INSERT,	UPDATE,	and	DELETE).

Summary
Views	are	virtual	tables.	They	do	not	contain	data,	but	they	contain	queries	that	retrieve
data	as	needed,	instead.	Views	provide	a	level	of	encapsulation	around	Oracle	SELECT
statements	and	can	be	used	to	simplify	data	manipulation,	as	well	as	to	reformat	or	secure
underlying	data.

Lesson	22.	Working	with	Stored	Procedures

In	this	lesson,	you’ll	learn	what	stored	procedures	are,	why	they	are	used,	and	how	they
are	used.	You’ll	also	look	at	the	basic	syntax	for	creating	and	using	them.

Understanding	Stored	Procedures
Most	of	the	SQL	statements	that	we’ve	used	thus	far	are	simple	in	that	they	use	a	single
statement	against	one	or	more	tables.	Not	all	operations	are	that	simple—often,	multiple
statements	are	needed	to	perform	a	complete	operation.	For	example,	consider	the
following	scenario:

	To	process	an	order,	checks	must	be	made	to	ensure	that	items	are	in	stock.

	If	items	are	in	stock,	they	need	to	be	reserved	so	they	are	not	sold	to	anyone	else,
and	the	available	quantity	must	be	reduced	to	reflect	the	correct	amount	in	stock.

	Any	items	not	in	stock	need	to	be	ordered;	this	requires	some	interaction	with	the
vendor.

	The	customer	needs	to	be	notified	as	to	which	items	are	in	stock	(and	can	be	shipped
immediately)	and	which	are	back	ordered.

This	is	obviously	not	a	complete	example,	and	it	is	even	beyond	the	scope	of	the	example
tables	that	we	have	been	using	in	this	book,	but	it	suffices	to	help	make	a	point.
Performing	this	process	requires	many	PL/SQL	statements	against	many	tables.	In
addition,	the	exact	statements	that	need	to	be	performed	and	their	order	are	not	fixed;	they
can	(and	will)	vary	according	to	which	items	are	in	stock	and	which	are	not.

How	would	you	write	this	code?	You	could	write	each	of	the	statements	individually	and
execute	other	statements	conditionally,	based	on	the	result.	You	would	have	to	do	this
every	time	this	processing	was	needed	(and	in	every	application	that	needed	it).

You	could	also	create	a	stored	procedure.	Stored	procedures	are	simply	collections	of	one
or	more	Oracle	PL/SQL	statements	saved	for	future	use.	You	can	think	of	them	as	batch
files,	although	in	truth	they	are	more	than	that.

The	language	used	to	write	stored	procedures	in	Oracle	is	PL/SQL,	and	the	PL	is
important,	because	it’s	the	procedural	language	that	provides	everything	from	if
statements	to	loops	and	more.

Note:	Just	an	Introduction

Oracle	stored	procedures	are	powerful	and	capable,	and	there’s	a	lot	to	learn	and
master.	There	are	entire	books,	books	far	bigger	than	this	one,	just	on	the	subject.
This	lesson	is	not	going	to	teach	you	all	you	need	to	know	about	functions	and
stored	procedures.	Rather,	I	want	to	use	this	lesson	to	help	you	understand	what
they	are,	what	they	look	like,	and	what	they	can	do.	Then,	when	you	run	into	an
opportunity	that	calls	for	one,	you’ll	know	which	direction	to	head	in.

Why	Use	Stored	Procedures
Now	that	you	know	what	stored	procedures	are,	why	use	them?	There	are	many	reasons,
but	here	are	the	primary	ones:

	To	simplify	complex	operations	(as	shown	in	the	previous	example)	by
encapsulating	processes	into	a	single	easy-to-use	unit.

	To	ensure	data	integrity	by	not	requiring	that	a	series	of	steps	be	created	over	and
over.	If	all	developers	and	applications	use	the	same	(tried-and-tested)	stored
procedure,	the	same	code	will	be	used	by	all.

An	extension	of	this	concept	is	to	prevent	errors.	The	more	steps	that	must	be
performed,	the	more	likely	it	is	that	errors	will	be	introduced.	Preventing	errors
ensures	data	consistency.

	To	simplify	change	management.	If	tables,	column	names,	or	business	logic	(or	just
about	anything)	changes,	only	the	stored	procedure	code	needs	to	be	updated,	and	no
one	else	needs	even	to	be	aware	that	changes	were	made.

An	extension	of	this	concept	is	security.	Restricting	access	to	underlying	data	via
stored	procedures	reduces	the	chance	of	data	corruption	(unintentional	or	otherwise).

	To	improve	performance,	because	stored	procedures	typically	execute	quicker	than
individual	SQL	statements	do.

In	other	words,	there	are	three	primary	benefits—simplicity,	security,	and	performance.
Obviously	all	are	extremely	important.	Before	you	run	off	to	turn	all	your	SQL	code	into
stored	procedures,	here	are	the	downsides:

	Stored	procedures	tend	to	be	more	complex	to	write	than	basic	SQL	statements,	and
writing	them	requires	a	greater	degree	of	skill	and	experience.

	You	might	not	have	the	security	access	needed	to	create	stored	procedures.	Many
database	administrators	restrict	stored	procedure	creation	rights,	allowing	users	to
execute	them	but	not	necessarily	create	them.

Nonetheless,	stored	procedures	are	very	useful	and	should	be	used	whenever	possible.

Using	Stored	Procedures
We’re	going	to	look	at	several	stored	procedures,	increasing	in	sophistication	and
complexity	as	we	go.

Note:	What	About	Functions?

In	addition	to	stored	procedures,	Oracle	also	supports	functions.	Functions	and
stored	procedures	are	very	similar;	they	allow	you	to	encapsulate	blocks	of
functionality.	The	main	difference	between	functions	and	stored	procedures	is	in
what	they	return:	Functions	always	return	a	single	value	(much	like	the	SQL
functions	we’ve	been	using	throughout	this	book).	Stored	procedures	don’t	return
values,	but	they	do	accept	parameters	that	can	be	used	to	pass	data	both	in	and	out.
Within	the	body	of	functions	and	stored	procedures,	the	code	you	can	write	and	the
operations	you	can	perform	are	much	the	same.	The	difference	is	in	how	the	code
will	be	used	and	executed.	As	such,	what	you’ll	learn	here	also	applies	to	functions,
even	though	we	don’t	focus	on	them	explicitly.

Basic	Stored	Procedure	Syntax
We’ll	start	with	a	simple	example—the	Oracle	stored	procedure	equivalent	of	Hello
World.	Here’s	the	code:

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	Hello	IS
BEGIN
DBMS_OUTPUT.PUT_LINE(‘Hello	World’);
END;

Analysis

Stored	procedures	are	created	using	the	CREATE	PROCEDURE	statement,	and	here	the
procedure	is	named	Hello.	The	body	of	a	stored	procedure	is	placed	between	BEGIN
and	END	statements,	and	the	body	of	this	stored	procedure	simply	displays	Hello
World	in	the	output	window.

Tip:	Use	

To	update	a	stored	procedure,	you	must	delete	it	and	then	create	it	again.	Or,	instead
of	using	CREATE	PROCEDURE,	use	CREATE	OR	REPLACE	PROCEDURE	as
we	did	here.	This	way	if	the	stored	procedure	doesn’t	exist	it’ll	be	created,	but	if	it
does	exist	it’ll	be	updated.

So	how	do	you	execute	this	stored	procedure?	You	use	the	EXECUTE	statement,	like	this:

Input

EXECUTE	Hello

Output
Hello	World

Analysis

EXECUTE	does	just	that—it	executes	a	stored	procedure,	which	in	this	case	simply
displays	Hello	World.	Okay,	so	that’s	a	bit	anti-climactic,	but	it’ll	get	better	in	a
moment.

Using	Programming	Constructs	in	Stored	Procedures
Things	become	a	little	more	interesting	when	stored	procedures	employ	programming
constructs.	Here’s	an	example:

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	Greeting	IS

h	number;
g	char(20);

BEGIN

SELECT	EXTRACT(HOUR	FROM	CURRENT_TIMESTAMP)	INTO	h	FROM	dual;

IF	h	>=	20	OR	h	<=	5	THEN
		g	:=	‘Goodnight!’;
ELSIF	h	>	5	AND	h	<=	12	THEN
		g	:=	‘Good	morning!’;
ELSIF	h	>	12	AND	h	<=	17	THEN
		g	:=	‘Good	afternoon!’;
ELSE
		g	:=	‘Good	evening!’;
END	IF;

DBMS_OUTPUT.PUT_LINE(g);
END;

Analysis

This	stored	procedure	displays	Good	morning!,	Good	afternoon!,	Good
evening!,	or	Goodnight!	depending	on	the	time	of	day.	As	in	the	previous	example,
CREATE	OR	REPLACE	PROCEDURE	is	used	to	create	a	procedure,	this	time	named
Greeting.	Next,	two	variables	are	created,	h	(a	number)	to	hold	the	current	hour,	and	g
(text)	to	hold	the	greeting	text.	BEGIN	starts	the	body,	a	SELECT	statement	obtains	the
current	system	hour,	and	INTO	h	tells	the	SELECT	to	save	the	result	in	variable	h.	Next
comes	an	IF	block	that	simply	looks	at	the	hour	and	saves	an	appropriate	greeting	into
variable	g.	Finally,	g	is	displayed	(just	like	we	displayed	Hello	World	previously).

To	run	this	stored	procedure,	just	do	the	following:

Input

EXECUTE	Greeting

Building	Intelligent	Stored	Procedures
Now	that	you’ve	seen	some	of	what	stored	procedures	can	do,	let’s	look	at	a	more	useful
example,	one	that	solves	an	actual	business	problem.	Back	in	Lesson	18,	“Inserting	Data,”
you	learned	how	to	add	rows	to	a	table.	For	our	example,	we	added	a	customer,	and	you
had	to	make	sure	that	the	customer	was	assigned	a	new	and	unique	id;	otherwise,	a	key
constraint	error	would	be	thrown.	Therefore,	you	had	to	pick	a	new	number	yourself,
making	sure	that	it	was	not	already	in	use.	Obviously,	in	the	real	world,	you	would	not
want	to	ask	users	to	do	this.	Customer	id	assignment	should	happen	safely,	reliably,	and
automatically.

This	next	stored	procedure	demonstrates	one	way	to	accomplish	this.	Rather	than	use
INSERT	to	add	a	customer,	you	can	create	a	stored	procedure	that	does	the	insertion	for
you.	You	simply	pass	it	the	customer	info,	and	it	finds	the	next	available	id	to	use	and	then
inserts	the	new	customer.

Here’s	the	code:

Input
Click	here	to	view	code	image

—	Add	a	new	customer
CREATE	OR	REPLACE	PROCEDURE	CustomerAdd(
					v_cust_name	IN	customers.cust_name%TYPE,
					v_cust_address	IN	customers.cust_address%TYPE,
					v_cust_city	IN	customers.cust_city%TYPE,
					v_cust_state	IN	customers.cust_state%TYPE,
					v_cust_zip	IN	customers.cust_zip%TYPE,
					v_cust_country	IN	customers.cust_country%TYPE,
					v_cust_contact	IN	customers.cust_contact%TYPE,
					v_cust_email	IN	customers.cust_email%TYPE)
IS

—	Variable	for	customer	id
v_cust_id	number;

BEGIN

—	Get	current	highest	customer	id
SELECT	MAX(cust_id)	INTO	v_cust_id
FROM	customers;

—	Increment	customer	id
v_cust_id	:=	v_cust_id+1;

—	Insert	new	customer
		INSERT	INTO	customers(cust_id,
																								cust_name,
																								cust_address,
																								cust_city,
																								cust_state,
																								cust_zip,
																								cust_country,
																								cust_contact,
																								cust_email)
		VALUES(v_cust_id,
									v_cust_name,

									v_cust_address,
									v_cust_city,
									v_cust_state,
									v_cust_zip,
									v_cust_country,
									v_cust_contact,
									v_cust_email);

		COMMIT;

END;

Analysis

This	example	is	more	complicated,	so	I’ve	added	comments	(something	you	should
always	do	in	all	of	your	stored	procedures).	Once	again,	CREATE	OR	REPLACE
PROCEDURE	is	used	to	create	a	stored	procedure	named	CustomerAdd.	This	stored
procedure	needs	to	accept	customer	data,	and	each	piece	of	data	is	specified	as	a
parameter	to	the	stored	procedure.

Because	eight	pieces	of	data	must	be	passed	in,	there	are	eight	parameters	defined,	the	first
of	which	is	v_cust_name	IN	customers.cust_name%TYPE.	The	first	part	of
the	parameter	definition	creates	a	variable	named	v_cust_name	(I	like	to	name	my
variables	v_	followed	by	the	associated	table	column).	IN	specifies	that	this	parameter	is
being	used	to	pass	data	into	the	stored	procedure	(as	opposed	to	OUT	of	it).
customers.cust_name%TYPE	specifies	that	this	parameter	is	associated	with	the
cust_name	column	in	the	customers	table.	This	same	pattern	is	repeated	for	all	eight
parameters.

Next,	the	code	creates	a	variable	to	store	the	customer	id	we’ll	be	using.

BEGIN	starts	the	stored	procedure	body,	and	the	first	thing	we	need	to	do	is	to	determine
the	current	highest	customer	id.	As	you	might	recall	from	Lesson	12,	“Summarizing
Data,”	MAX()	can	find	the	greatest	value	in	a	column,	and	so	we	SELECT
MAX(cust_id)	from	the	customers	table,	and	save	it	INTO	v_cust_id.	Now
variable	v_cust_id	contains	the	current	highest	customer	id,	but	we	need	a	value
greater	than	that,	and	so	v_cust_id	:=	v_cust_id+1;	increments	v_cust_id
by	1.

Next	comes	the	INSERT	statement,	which	is	just	like	the	one	you	saw	in	Lesson	18,
except	that	this	time	the	VALUES	are	all	variables,	a	local	variable	for	cust_id,	and	the
passed	parameters	for	all	the	others.

Finally,	COMMIT	is	used	to	save	the	changes,	and	the	stored	procedure	is	closed	with
END;.

To	try	this	example,	use	the	following	EXECUTE	statement:

Input
Click	here	to	view	code	image

EXECUTE	CustomerAdd(‘Pep	E.	LaPew’,

																				‘100	Main	Street’,
																				‘Los	Angeles’,
																				‘CA’,
																				‘90046’,
																				‘USA’,
																				NULL,
																				NULL)

Analysis

By	now,	the	code	should	be	self-explanatory.	EXECUTE	runs	the	stored	procedure,	and	all
necessary	values	are	passed	as	parameters.	The	stored	procedure	then	defines	a	new
customer	id,	and	INSERTs	the	new	customer.

Dropping	Stored	Procedures
After	they	are	created,	stored	procedures	remain	on	the	server,	ready	for	use,	until
dropped.	The	DROP	command	(similar	to	the	statement	shown	in	Lesson	20,	“Creating
and	Manipulating	Tables”)	removes	the	stored	procedure	from	the	server.

To	remove	the	stored	procedure	we	just	created,	use	the	following	statement:

Input

DROP	PROCEDURE	Greeting;

Analysis

This	removes	the	recently	created	stored	procedure.

Summary
In	this	lesson,	you	learned	what	stored	procedures	are	and	why	they	are	used.	You	also
learned	the	basics	of	stored	procedure	execution	and	creation	syntax,	and	you	saw	some	of
the	ways	these	can	be	used.	We’ll	continue	this	subject	in	the	next	lesson.

Lesson	23.	Using	Cursors

In	this	lesson,	you’ll	learn	what	cursors	are	and	how	to	use	them.

Understanding	Cursors
As	you	have	seen	in	previous	lessons,	Oracle	retrieval	operations	work	with	sets	of	rows
known	as	result	sets.	The	rows	returned	are	all	the	rows	that	match	a	SQL	statement—zero
or	more	of	them.	Using	simple	SELECT	statements,	there	is	no	way	to	get	the	first	row,
the	next	row,	or	the	previous	10	rows,	for	example.	Nor	is	there	an	easy	way	to	process	all
rows,	one	at	a	time	(as	opposed	to	all	of	them	in	a	batch).

Sometimes	you	need	to	step	through	rows	forward	or	backward	and	one	or	more	at	a	time.
This	is	what	cursors	are	used	for.	A	cursor	is	a	database	query	stored	on	the	Oracle	server
—not	a	SELECT	statement,	but	the	result	set	retrieved	by	that	statement.	After	the	cursor
is	stored,	applications	can	scroll	or	browse	up	and	down	through	the	data	as	needed.

To	help	demonstrate	this,	consider	the	following	scenario.	Our	vendors	table	contains
vendor	names	and	addresses.	In	the	real	world,	address	data	can	become	inconsistent	very
quickly;	some	users	might	capitalize	streets	and	others	might	not,	some	might	enter	Rd
and	others	Rd.	and	yet	other	Road;	state	and	province	names	might	be	capitalized	or	not
(or	worse,	might	be	mixed	case);	UK	and	Canadian	style	postal	codes	might	have	spaces
in	them	or	not;	and	so	on.	Cleaning	up	the	data	to	ensure	uniformity	and	consistency	is	too
complex	a	task	for	a	SQL	UPDATE	statement;	converting	a	column	to	uppercase	for	all	(or
some)	rows	is	easy	enough,	but	applying	different	rules	based	on	country,	for	example,
requires	that	each	row	be	processed	individually.	This	is	a	great	task	for	cursors.

Note:	Explicit	and	Implicit	Cursors

In	Oracle,	every	time	you	execute	a	SQL	statement,	a	cursor	is	created	internally;
that’s	how	Oracle	itself	process	the	SQL	statement.	This	type	of	cursor	is	called	an
implicit	cursor,	as	opposed	to	the	explicit	cursor,	which,	as	its	name	suggests,	is
one	you	explicitly	create.	When	you	work	with	cursors,	you	will	almost	exclusively
be	using	explicit	cursors,	and	so	all	the	examples	in	this	lesson	are	exactly	that.
However,	although	they	are	not	covered	in	this	lesson,	if	needed,	you	can	work	with
the	implicit	cursors	that	Oracle	creates,	and	the	techniques	discussed	here	apply
equally	to	all	cursors.

Working	with	Cursors
Using	cursors	involves	several	distinct	steps:

1.	Before	a	cursor	can	be	used,	it	must	be	declared	(defined).	This	process	does	not
actually	retrieve	any	data;	it	merely	defines	the	SELECT	statement	to	be	used.

2.	After	it	is	declared,	the	cursor	must	be	opened	for	use.	This	process	actually
retrieves	the	data	using	the	previously	defined	SELECT	statement.

3.	With	the	cursor	populated	with	data,	individual	rows	can	be	fetched	(retrieved)	as
needed.

4.	When	it	is	done,	the	cursor	must	be	closed.

Creating	Cursors
Cursors	are	created	using	the	DECLARE	CURSOR	statement.	CURSOR	names	the	cursor
and	takes	a	SELECT	statement,	complete	with	WHERE	and	other	clauses	if	needed.	For
example,	this	statement	defines	a	cursor	named	ordernumbers	using	a	SELECT
statement	that	retrieves	all	orders:

Input
Click	here	to	view	code	image

DECLARE
			CURSOR	c_vendors	IS
			SELECT	vend_id,	vend_name,	vend_address,
										vend_city,	vend_state,	vend_zip,	vend_country
			FROM	vendors;

Analysis

Don’t	run	this	code	yet;	it’s	not	complete	enough	for	Oracle	and	will	generate	errors,	but
let’s	look	at	it.	DECLARE	CURSOR	does	just	what	its	name	implies—it	creates	a	new
cursor,	here	named	c_vendors.	The	only	code	in	the	cursor	is	a	SELECT	statement,
which	defines	the	data	that	will	be	used	within	the	cursor.

Now	that	the	cursor	is	defined,	it	is	ready	to	be	opened.

Opening	and	Closing	Cursors
Cursors	are	opened	using	the	OPEN	statement,	like	this:

Input

OPEN	c_vendors;

After	cursor	processing	is	complete,	the	cursor	should	be	closed	using	the	CLOSE
statement,	as	follows:

Input

CLOSE	c_vendors;

Here	is	a	more	complete	example,	and	this	one	runs	without	any	errors:

Input
Click	here	to	view	code	image

DECLARE
			CURSOR	c_vendors	IS

			SELECT	vend_id,	vend_name,	vend_address,
										vend_city,	vend_state,	vend_zip,	vend_country
			FROM	vendors;

BEGIN

		OPEN	c_vendors;
		CLOSE	c_vendors;

END;

Analysis

Here,	the	cursor	is	defined,	it	is	then	opened,	and	right	away	closed,	but	nothing	is	done
with	the	retrieved	data.

Fetching	Cursor	Data
After	a	cursor	is	opened,	each	row	can	be	accessed	individually	using	a	FETCH	statement.
FETCH	specifies	what	is	to	be	retrieved	(the	desired	columns)	and	where	retrieved	data
should	be	stored.	It	also	advances	the	internal	row	pointer	within	the	cursor	so	the	next
FETCH	statement	retrieves	the	next	row	(and	not	the	same	one	over	and	over).

Here’s	an	update	to	our	prior	cursor:

Input
Click	here	to	view	code	image

DECLARE
			—	Declare	variables
			v_vend_id	vendors.vend_id%TYPE;
			v_vend_name	vendors.vend_name%TYPE;
			v_vend_address	vendors.vend_address%TYPE;
			v_vend_city	vendors.vend_city%TYPE;
			v_vend_state	vendors.vend_state%TYPE;
			v_vend_zip	vendors.vend_zip%TYPE;
			v_vend_country	vendors.vend_country%TYPE;

			—	Declare	cursor
			CURSOR	c_vendors	IS
			SELECT	vend_id,	vend_name,	vend_address,
										vend_city,	vend_state,	vend_zip,	vend_country
			FROM	vendors;

BEGIN

		—	Open	cursor
		OPEN	c_vendors;

		—	Loop	through	cursor
		LOOP

					—	Get	a	row
					FETCH	c_vendors	INTO	v_vend_id,
																										v_vend_name,
																										v_vend_address,
																										v_vend_city,
																										v_vend_state,

																										v_vend_zip,
																										v_vend_country;

					—	When	no	more	rows,	exit
					EXIT	WHEN	c_vendors%notfound;

		END	LOOP;

		—	Close	cursor
		CLOSE	c_vendors;

END;

Tip:	It’s	PL/SQL

If	the	basic	code	and	structure	of	this	cursor	looks	familiar,	that’s	because	it’s
written	in	PL/SQL,	the	same	language	used	in	Lesson	22,	“Working	with	Stored
Procedures,”	when	we	looked	at	stored	procedures.	The	more	you	learn	about	the
PL	(procedural	language)	part	of	PL/SQL,	the	more	you	can	take	advantage	of
Oracle’s	more	advanced	functionality.

Analysis

The	cursor	has	gotten	far	more	complex,	so	let’s	walk	through	it.	(Notice	that	I	have
commented	the	code,	something	that	I	recommend	you	always	do.)

Once	again,	we	start	with	a	DECLARE	statement,	but	this	time	it	is	doing	more	than
declare	the	cursor;	it’s	also	declaring	a	series	of	variables	that	are	needed	to	contain
retrieved	data	(more	on	that	in	a	moment).	The	variables	are	defined	in	much	the	same
way	as	we	defined	stored	procedure	parameters—they	are	named,	and	then	associated
with	specific	table	columns.

Next	comes	the	cursor	definition	itself,	just	as	we	saw	in	“Creating	Cursors”	previously,
and	the	cursor	is	then	opened.

New	to	this	example	is	the	LOOP	instruction,	which	defines	a	block	of	code	that	gets
repeated.	Everything	between	LOOP	and	END	LOOP	gets	repeated	over	and	over,	until
something	within	the	loop	forces	an	exit.

FETCH	is	then	used	to	fetch	one	row	from	the	cursor	INTO	specified	variables.	You’ll
notice	that	column	names	are	not	specified,	and	so	cursor	column	order	is	important.	The
first	column	defined	in	the	cursor’s	SELECT	statement	will	be	stored	in	the	first	variable,
the	second	in	the	second,	and	so	on.	This	is	why	I	like	to	name	my	variables	v_	(for
variable)	followed	by	the	name	of	the	column	with	which	they’ll	be	used;	it	makes
working	with	them	a	whole	lot	easier.

FETCH	fetches	one	row	at	a	time,	and	so	each	time	through	the	loop,	a	different	row	is
fetched,	and	the	variables	are	updated	with	new	values.	So	how	does	the	loop	ever
terminate?	That’s	what	EXIT	does—it	exits	the	loop,	terminating	loop	processing.	You
can	use	EXIT	any	time;	you	could	have	put	it	at	the	top	of	the	loop	and	the	loop	would
then	immediately	terminate.	Here	we	use	EXIT	WHEN	c_vendors%notfound,
which	tells	Oracle	to	EXIT	WHEN	the	c_vendors	cursor	returns	a	notfound	state

indicating	that	no	more	rows	are	left	to	FETCH.

Our	cursor	isn’t	actually	doing	anything	with	the	fetched	data,	but	it	is	looping	through
retrieved	rows	and	storing	columns	into	variables.

Using	Cursor	Data
Now	that	we	can	FETCH	one	row	at	a	time,	we	can	work	with	that	data.	Look	at	this	next
example:

Input
Click	here	to	view	code	image

DECLARE
			—	Declare	variables
			v_vend_id	vendors.vend_id%TYPE;
			v_vend_name	vendors.vend_name%TYPE;
			v_vend_address	vendors.vend_address%TYPE;
			v_vend_city	vendors.vend_city%TYPE;
			v_vend_state	vendors.vend_state%TYPE;
			v_vend_zip	vendors.vend_zip%TYPE;
			v_vend_country	vendors.vend_country%TYPE;

			—	Declare	cursor
			CURSOR	c_vendors	IS
			SELECT	vend_id,	vend_name,	vend_address,
										vend_city,	vend_state,	vend_zip,	vend_country
			FROM	vendors;

BEGIN

		—	Open	cursor
		OPEN	c_vendors;

		—	Loop	through	cursor
		LOOP

					—	Get	a	row
					FETCH	c_vendors	INTO	v_vend_id,
																										v_vend_name,
																										v_vend_address,
																										v_vend_city,
																										v_vend_state,
																										v_vend_zip,
																										v_vend_country;

								—	Is	this	address	in	USA?
								IF	Trim(v_vend_country)	=	‘USA’	THEN
										—	Make	sure	state	abbreviation	is	upper	case
										v_vend_state	:=	Upper(v_vend_state);
										—	Update	the	vendor
										UPDATE	vendors
										SET	vend_state	=	v_vend_state
										WHERE	vend_id	=	v_vend_id;
								END	IF;

					—	When	no	more	rows,	exit
					EXIT	WHEN	c_vendors%notfound;

		END	LOOP;

		—	Close	cursor
		CLOSE	c_vendors;

END;

Analysis

This	example	is	exactly	the	same	as	the	prior	example,	until	you	get	to	the	code	within	the
LOOP.	Previously	we	used	FETCH	to	retrieve	data	and	then	did	nothing	with	it.	Here
we’ve	added	some	processing.

The	IF	statements	checks	to	see	whether	the	row	that	has	been	fetched	is	in	the	USA.	If
yes,	it	uses	the	Upper()	function	to	convert	the	state	(stored	in	variable
v_vend_state)	to	uppercase.

Next,	an	UPDATE	statement	is	used	to	update	the	vendors	table	with	the	corrected	state,
using	variables	both	as	the	SET	value	and	in	the	WHERE	clause.

And	then	it’s	on	to	the	next	row.

To	keep	things	simple,	this	example	fixes	one	thing	only—it	makes	sure	that	USA	state
abbreviations	are	in	uppercase.	In	the	real	world,	additional	processing	would	be	needed,
and	all	sorts	of	rules	could	be	provided,	including	additional	IF	blocks	for	other	countries.
In	addition,	this	code	is	rather	inefficient	in	that	it	updates	the	vendor	unconditionally;	if
the	state	was	already	uppercase,	then	this	UPDATE	wouldn’t	be	needed,	and	so	a	better
implementation	would	only	issue	UPDATE	statements	if	there	were	actually	something	to
update.	But	you	get	the	idea,	and	with	this	basic	structure	in	place,	it’s	easy	to	add	extra
programming	logic	and	intelligence	to	the	code.

Note:	 	or	 ?

In	addition	to	the	LOOP	statement	used	here,	Oracle	also	supports	a	REPEAT
UNTIL	statement	that	can	be	used	to	repeat	code	(including	cursors)	until	a
condition	is	met.	In	general,	you’ll	find	the	syntax	of	the	LOOP	statement	makes	it
better	suited	for	looping	through	cursors.

There	you	have	it—a	complete	working	example	of	cursors	and	row-by-row	processing.

Summary
In	this	lesson,	you	learned	what	cursors	are	and	why	they	are	used.	You	also	saw	examples
demonstrating	basic	cursor	use,	as	well	as	techniques	for	looping	through	cursor	results
and	for	row-by-row	processing.

Lesson	24.	Using	Triggers

In	this	lesson,	you’ll	learn	what	triggers	are,	why	they	are	used,	and	how.	You’ll	also	look
at	the	syntax	for	creating	and	using	them.

Understanding	Triggers
Oracle	statements	are	executed	when	needed,	as	are	stored	procedures.	But	what	if	you
wanted	a	statement	(or	statements)	to	be	executed	automatically	when	events	occur?	For
example:

	Every	time	a	customer	is	added	to	a	database	table,	check	that	the	phone	number	is
formatted	correctly	and	that	the	state	abbreviation	is	in	uppercase.

	Every	time	a	product	is	ordered,	subtract	the	ordered	quantity	from	the	number	in
stock.

	Whenever	a	row	is	deleted,	save	a	copy	in	an	archive	table.

What	all	these	examples	have	in	common	is	that	they	need	to	be	processed	automatically
whenever	an	event	occurs.	That	is	exactly	what	triggers	are.	A	trigger	is	an	Oracle
statement	(or	a	group	of	statements	enclosed	within	BEGIN	and	END	statements)	that	are
automatically	executed	by	Oracle	in	response	to	any	of	these	statements:

	ALTER

	CREATE

	DROP

	DELETE

	INSERT

	UPDATE

The	last	three	are	of	the	greatest	interest—triggers	that	are	executed	in	response	to	table
row	changes.

Note:	Triggers	on	Database	Operations

Oracle	also	supports	triggers	on	server	startup	and	shutdown,	user	login	and	logoff,
and	more.	These	are	beyond	the	scope	of	this	book,	and	are	primarily	of	interest	to
database	administrators.

Creating	Triggers
When	creating	a	trigger,	you	need	to	specify	four	pieces	of	information:

	The	unique	trigger	name

	The	table	to	which	the	trigger	is	to	be	associated

	The	action	that	the	trigger	should	respond	to	(DELETE,	INSERT,	or	UPDATE)

	When	the	trigger	should	be	executed	(BEFORE	or	AFTER	processing)

Triggers	are	created	using	the	CREATE	TRIGGER	statement.	Here	is	a	simple	example
(which	doesn’t	actually	do	anything	useful,	but	does	help	explain	the	syntax	needed):

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	orders_after_insert
AFTER	INSERT	ON	orders
FOR	EACH	ROW

BEGIN

END;

Analysis

This	example	won’t	run;	Oracle	doesn’t	like	code	that	does	nothing,	and	if	you	try	to
execute	it,	an	error	is	returned.	That	said,	let’s	look	at	the	code.

CREATE	OR	REPLACE	TRIGGER	is	used	to	create	the	new	trigger	named
orders_after_insert.	Triggers	can	execute	before	or	after	an	operation	occurs,	and
here	AFTER	INSERT	ON	is	specified	so	the	trigger	will	execute	after	a	successful
INSERT	statement	has	been	executed.	INSERT	can	insert	multiple	rows,	and	the	trigger
then	specifies	FOR	EACH	ROW	and	the	code	to	be	executed	for	each	inserted	row.	So,
whenever	a	product	is	added	to	the	customers	table,	this	trigger	runs,	and	any	code
between	BEGIN	and	END	executes.

Note:	When	Triggers	Fail

If	a	BEFORE	trigger	fails,	Oracle	does	not	perform	the	requested	operation.	In
addition,	if	either	a	BEFORE	trigger	or	the	SQL	statement	itself	fails,	Oracle	does
not	execute	an	AFTER	trigger	(if	one	exists).

Dropping	Triggers
By	now,	the	syntax	for	dropping	a	trigger	should	be	self-apparent.	To	drop	a	trigger,	use
the	DROP	TRIGGER	statement,	as	shown	here:

Input
Click	here	to	view	code	image

DROP	TRIGGER	orders_after_insert;

Analysis

To	update	a	trigger,	either	DROP	and	then	CREATE	again,	or	use	CREATE	OR	REPLACE
as	shown	previously.

Using	Triggers
With	the	basics	covered,	now	look	at	each	of	the	supported	trigger	types,	and	the
differences	between	them.

	Triggers
INSERT	triggers	execute	BEFORE	or	AFTER	an	INSERT	statement	executes.	Be	aware
of	the	following:

	Within	INSERT	trigger	code,	you	can	refer	to	a	virtual	table	named	:NEW	to	access
the	rows	being	inserted.

	In	a	BEFORE	INSERT	trigger,	the	values	in	:NEW	may	also	be	updated	(allowing
you	to	change	values	about	to	be	inserted).

A	common	use	for	triggers	is	to	track	table	changes	(audit	trails	or	logs).	To	try	an
example,	you’ll	first	need	a	table	to	store	this	information.	This	next	Oracle	SQL
statement	creates	a	table	to	store	a	log	of	all	changes	to	the	orders	table:

Input
Click	here	to	view	code	image

CREATE	TABLE	orders_log
(
		changed_on		TIMESTAMP	NOT	NULL	,
		change_type	CHAR(1)			NOT	NULL	,
		order_num			INT							NOT	NULL
);

Analysis

This	table	has	columns	to	store	the	change	date	and	time,	the	type	of	change	(A	for	added,
U	for	updated,	D	for	deleted),	and	the	order_num	of	the	order	changed.

Now	that	you	have	a	table	to	store	the	change	log,	you	need	to	create	the	trigger	that	will
update	this	new	table.	Here	is	the	code:

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	orders_after_insert
AFTER	INSERT	ON	orders
FOR	EACH	ROW

BEGIN

		INSERT	INTO	orders_log(changed_on,	change_type,	order_num)
		VALUES(SYSDATE,	‘A’,	:NEW.order_num);

END;

Analysis

CREATE	OR	REPLACE	TRIGGER	is	used	to	create	the	new	trigger	named
orders_after_insert.	Triggers	can	be	executed	before	or	after	an	operation	occurs,
and	here	AFTER	INSERT	ON	is	specified	so	the	trigger	will	execute	after	a	successful
INSERT	statement	has	been	executed.	The	trigger	then	specifies	FOR	EACH	ROW	so	that
the	trigger	code	will	be	executed	for	each	row	if	INSERT	inserts	multiple	rows.	When	a
new	order	is	saved	in	orders,	Oracle	executes	the	trigger,	and	inserts	a	new	row	into
orders_log.	The	date	and	time	is	saved	using	SYSTIME,	the	action	is	set	to	A	(for
add),	and	the	new	number	is	obtained	from	:NEW.order_num.

The	most	important	thing	to	note	about	this	example	is	the	use	of	the	:NEW	table.	:NEW	is
not	an	actual	table,	but	it	can	be	used	as	one	within	triggers	to	access	the	new	data.	You’ll
see	:OLD	used	the	same	way	shortly.

To	test	this	trigger,	try	inserting	a	new	order,	like	this	(feel	free	to	change	the	values;	just
be	sure	to	use	a	valid	cust_id):

Input
Click	here	to	view	code	image

INSERT	INTO	orders(order_num,	order_date,	cust_id)
VALUES(20010,	SYSDATE,	10001);

The	INSERT	statement	itself	does	not	return	anything	useful,	but	it	did	cause	our	trigger
to	be	executed.	To	verify	this,	let’s	see	what	is	in	the	orders_log	table:

Input

SELECT	*	FROM	orders_log;

Output
Click	here	to	view	code	image

+–––––––+––––-+–––—+
|	changed_on										|	change_type	|	order_num	|
+–––––––+––––-+–––—+
|	19-FEB-15	04.27.18		|	A											|					20010	|
+–––––––+––––-+–––—+

Analysis

orders_logs	contains	three	columns.	changed_on	contains	the	date	and	time	that
the	change	occurred	(returned	by	SYSDATE	in	the	trigger),	change_type	is	A	(order
added),	and	order_num	contains	the	new	order	number.

Tip:	 	or	 ?

This	example	used	AFTER	to	execute	the	trigger	after	the	new	order	was	created.
As	a	rule,	use	AFTER	if	you	need	to	access	data	that	won’t	exist	until	a	statement
has	been	processed.	Use	BEFORE	for	any	data	validation	and	cleanup	(for	example,
if	you	want	to	make	sure	that	the	data	inserted	into	the	table	was	exactly	as	needed).

	Triggers
DELETE	triggers	are	executed	before	or	after	a	DELETE	statement	is	executed.	Be	aware
of	the	following:

	Within	DELETE	trigger	code,	you	can	refer	to	a	virtual	table	named	:OLD	to	access
the	rows	being	deleted.

	The	values	in	:OLD	are	all	read-only	and	cannot	be	updated.

The	following	example	demonstrates	the	use	of	:OLD	to	save	rows	about	to	be	deleted
into	the	log	table:

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	orders_before_delete
BEFORE	DELETE	ON	orders
FOR	EACH	ROW

BEGIN

		INSERT	INTO	orders_log(changed_on,	change_type,	order_num)
		VALUES(SYSDATE,	‘D’,	:OLD.order_num);

END;

Analysis

This	trigger	is	similar	to	the	orders_after_insert	trigger,	but	this	one	logs	order
deletions.	This	trigger	is	executed	BEFORE	DELETE	(or	you	would	not	have	access	to
the	order_num).

If	you	were	to	delete	the	order	you	just	inserted,	you	would	see	a	second	row	in	the
orders_log	table	reflecting	the	deletion.

Another	good	use	for	DELETE	triggers	is	to	archive	deletions	(rows	deleted	from	a	table
will	automatically	be	saved	in	their	entirety	to	an	archive	table).	This	updated	version	of
the	orders_before_delete	trigger	logs	the	deletion	and	also	saves	the	deleted	data
to	a	table	named	orders_archive	(you’ll	obviously	need	to	create	that	table	for	this
trigger	to	work;	orders_archive	will	use	the	same	CREATE	TABLE	statement	as	the
one	used	to	create	orders):

Input

Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	orders_before_delete
BEFORE	DELETE	ON	orders
FOR	EACH	ROW

BEGIN

		—	Log	deletion
		INSERT	INTO	orders_log(changed_on,	change_type,	order_num)
		VALUES(SYSDATE,	‘D’,	:OLD.order_num);
		—	Archive	it
		INSERT	INTO	orders_archive(order_num,	order_date,	cust_id)
		VALUES(:OLD.order_num,	:OLD.order_date,	:OLD.cust_id);
END;

Analysis

Before	any	order	is	deleted,	this	trigger	will	be	executed.	In	addition	to	the	logging	shown
previously,	this	trigger	uses	an	INSERT	statement	to	save	the	values	in	:OLD	(the	order
about	to	be	deleted)	into	an	archive	table	named	archive_orders.

Tip:	An	Extra	Level	of	Protection

The	advantage	of	using	a	BEFORE	DELETE	trigger	(as	opposed	to	an	AFTER
DELETE	trigger)	is	that	if	for	some	reason	the	order	could	not	be	archived,	the
DELETE	itself	will	be	aborted.

	Triggers
UPDATE	triggers	are	executed	before	or	after	an	UPDATE	statement	is	executed.	Be	aware
of	the	following:

	In	UPDATE	trigger	code,	you	can	refer	to	a	virtual	table	named	:OLD	to	access	the
previous	(pre-UPDATE	statement)	values	and	:NEW	to	access	the	new	updated
values.

	In	a	BEFORE	UPDATE	trigger,	the	values	in	:NEW	may	also	be	updated	(allowing
you	to	change	values	about	to	be	used	in	the	UPDATE	statement).

	The	values	in	:OLD	are	all	read-only	and	cannot	be	updated.

The	following	example	ensures	that	state	abbreviations	are	always	in	uppercase
(regardless	of	how	they	were	actually	specified	in	the	UPDATE	statement):

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	customers_before_update
BEFORE	UPDATE	ON	customers
FOR	EACH	ROW

BEGIN

			:NEW.cust_state	:=	Upper(:NEW.cust_state);

END;

Analysis

Obviously,	any	data	cleanup	needs	to	occur	in	the	BEFORE	UPDATE	statement	as	it	does
in	this	example.	Each	time	a	row	is	updated,	the	value	in	:NEW.vend_state	(the	value
that	will	be	used	to	update	table	rows)	is	replaced	with	Upper(:NEW.vend_state).
Notice	that	the	trigger	doesn’t	have	to	use	an	UPDATE	statement	to	update	the	row.	The
trigger	executes	BEFORE	the	UPDATE	is	executed,	and	the	code	modifies	the	data	in
:NEW	before	it	is	used,	so	by	the	time	Oracle	executes	the	original	UPDATE	statement,	the
modified	cust_state	will	be	used.

Multi-Event	Triggers
All	the	triggers	we’ve	seen	thus	far	execute	when	a	specific	event	(INSERT,	UPDATE,	or
DELETE)	occurs.	Oracle	allows	triggers	to	be	associated	with	multiple	events.	Here’s	an
example,	a	minor	modification	to	the	last	shown	trigger:

Input
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	customers_before_update
BEFORE	INSERT	OR	UPDATE	ON	customers
FOR	EACH	ROW

BEGIN

			:NEW.cust_state	:=	Upper(:NEW.cust_state);

END;

Analysis

The	only	change	here	is	that	BEFORE	UPDATE	has	been	changed	to	BEFORE	INSERT
OR	UPDATE.	This	way	our	trigger,	which	forces	correct	case	of	cust_state,	will	be
used	for	new	customers	as	well	as	updates.

Of	course,	triggers	that	fire	on	multiple	events	must	be	compatible	with	all	of	those	events.
In	our	example,	we	used	:NEW,	which	is	indeed	present	for	both	INSERT	and	UPDATE
operations,	and	so	the	trigger	could	safely	be	used	for	both	events.	Had	our	code	used
:OLD,	which	would	be	present	for	UPDATE	but	not	INSERT,	this	reuse	would	not	have
been	possible.

More	on	Triggers
Before	wrapping	this	lesson,	here	are	some	important	points	to	keep	in	mind	when	using
triggers:

	Triggers	are	written	in	PL/SQL,	and	everything	you’ve	learned	about	PL/SQL	thus
far	applies	to	triggers,	too.

	Creating	triggers	might	require	special	security	access.	However,	trigger	execution
is	automatic.	If	an	INSERT,	UPDATE,	or	DELETE	statement	might	be	executed,	any
associated	triggers	execute,	too.

	Triggers	should	be	used	to	ensure	data	consistency	(case,	formatting,	and	so	on).
The	advantage	of	performing	this	type	of	processing	in	a	trigger	is	that	it	always
happens,	and	happens	transparently,	regardless	of	client	application.

	One	very	interesting	use	for	triggers	is	in	creating	an	audit	trail,	as	shown	in	this
lesson.	Using	triggers,	it	would	be	easy	to	log	changes	(even	before	and	after	states
if	needed)	to	another	table.

	Triggers	can	invoke	other	PL/SQL	code,	including	functions	and	stored	procedures.

Summary
In	this	lesson,	you	learned	what	triggers	are	and	why	they	are	used.	You	learned	the	trigger
types	and	the	times	that	they	can	be	executed.	You	also	saw	examples	of	triggers	used	for
INSERT,	DELETE,	and	UPDATE	operations.

Lesson	25.	Managing	Transaction	Processing

In	this	lesson,	you’ll	learn	what	transactions	are	and	how	to	use	COMMIT	and	ROLLBACK
statements	to	manage	transaction	processing.

Understanding	Transaction	Processing
Transaction	processing	is	used	to	maintain	database	integrity	by	ensuring	that	batches	of
Oracle	SQL	operations	execute	completely	or	not	at	all.

As	explained	back	in	Lesson	15,	“Joining	Tables,”	relational	databases	are	designed	so
data	is	stored	in	multiple	tables	to	facilitate	easier	data	manipulation,	management,	and
reuse.	Without	going	in	to	the	hows	and	whys	of	relational	database	design,	take	it	as	a
given	that	well-designed	database	schemas	are	relational	to	some	degree.

The	orders	tables	you’ve	been	using	in	prior	lessons	are	a	good	example	of	this.	Orders	are
stored	in	two	tables:	orders	stores	actual	orders,	and	orderitems	stores	the
individual	items	ordered.	These	two	tables	are	related	to	each	other	using	unique	IDs
called	primary	keys	(as	discussed	in	Lesson	1,	“Understanding	SQL”).	These	tables,	in
turn,	are	related	to	other	tables	containing	customer	and	product	information.

The	process	of	adding	an	order	to	the	system	is	as	follows:

1.	Check	whether	the	customer	is	already	in	the	database	(present	in	the	customers
table).	If	not,	add	him	or	her.

2.	Retrieve	the	customer’s	ID.

3.	Add	a	row	to	the	orders	table	associating	it	with	the	customer	ID.

4.	Retrieve	the	new	order	ID	assigned	in	the	orders	table.

5.	Add	one	row	to	the	orderitems	table	for	each	item	ordered,	associating	it	with
the	orders	table	by	the	retrieved	ID	(and	with	the	products	table	by	product
ID).

Now	imagine	that	some	database	failure	(for	example,	out	of	disk	space,	security
restrictions,	table	locks)	prevents	this	entire	sequence	from	completing.	What	would
happen	to	your	data?

Well,	if	the	failure	occurred	after	the	customer	was	added	and	before	the	orders	table
was	added,	there	is	no	real	problem.	It	is	perfectly	valid	to	have	customers	without	orders.
When	you	run	the	sequence	again,	the	inserted	customer	record	will	be	retrieved	and	used.
You	can	effectively	pick	up	where	you	left	off.

But	what	if	the	failure	occurred	after	the	orders	row	was	added,	but	before	the
orderitems	rows	were	added?	Now	you	would	have	an	empty	order	sitting	in	your
database.

Worse,	what	if	the	system	failed	during	adding	the	orderitems	rows?	Now	you	would
end	up	with	a	partial	order	in	your	database,	but	you	wouldn’t	know	it.

How	do	you	solve	this	problem?	That’s	where	transaction	processing	comes	in.
Transaction	processing	is	a	mechanism	used	to	manage	sets	of	SQL	operations	that	must
be	executed	in	batches	to	ensure	that	databases	never	contain	the	results	of	partial
operations.	With	transaction	processing,	you	can	ensure	that	sets	of	operations	are	not
aborted	mid-processing—they	either	execute	in	their	entirety	or	not	at	all	(unless	explicitly
instructed	otherwise).	If	no	error	occurs,	the	entire	set	of	statements	is	committed	(written)
to	the	database	tables.	If	an	error	does	occur,	a	rollback	(undo)	can	occur	to	restore	the
database	to	a	known	and	safe	state.

So,	looking	at	the	same	example,	this	is	how	the	process	would	work:

1.	Check	whether	the	customer	is	already	in	the	database;	if	not,	add	him	or	her.

2.	Commit	the	customer	information.

3.	Retrieve	the	customer’s	ID.

4.	Add	a	row	to	the	orders	table.

5.	If	a	failure	occurs	while	adding	the	row	to	orders,	roll	back.

6.	Retrieve	the	new	order	ID	assigned	in	the	orders	table.

7.	Add	one	row	to	the	orderitems	table	for	each	item	ordered.

8.	If	a	failure	occurs	while	adding	rows	to	orderitems,	roll	back	all	the
orderitems	rows	added	and	the	orders	row.

9.	Commit	the	order	information.

When	you’re	working	with	transactions	and	transaction	processing,	there	are	a	few
keywords	that’ll	keep	reappearing.	Here	are	the	terms	you	need	to	know:

	Transaction—A	block	of	SQL	statements

	Rollback—The	process	of	undoing	specified	SQL	statements

	Commit—Writing	unsaved	SQL	statements	to	the	database	tables

	Savepoint—A	temporary	placeholder	in	a	transaction	set	to	which	you	can	issue	a
rollback	(as	opposed	to	rolling	back	an	entire	transaction)

Controlling	Transactions
Now	that	you	know	what	transaction	processing	is,	let’s	look	at	what	is	involved	in
managing	transactions.

The	key	to	managing	transactions	involves	breaking	your	SQL	statements	into	logical
chunks	and	explicitly	stating	when	data	should	be	rolled	back	and	when	it	should	not.

Unlike	most	DBMSs,	Oracle	does	not	require	you	to	start	a	transaction.	In	Oracle,
transactions	are	implicit.	Any	time	you	execute	a	SQL	statement,	a	transaction	is	started
and	finished,	and	if	multiple,	the	statements	are	executed	at	once;	all	are	contained	within
a	single	transaction.

Using	
The	Oracle	ROLLBACK	command	is	used	to	roll	back	(undo)	PL/SQL	statements,	as
shown	in	this	next	statement:

Input

SELECT	*	FROM	orders_log;
DELETE	FROM	orders_log;
SELECT	*	FROM	orders_log;
ROLLBACK;
SELECT	*	FROM	orders_log;

Analysis

This	example	starts	by	displaying	the	contents	of	the	orders_logs	table	(this	table	was
created	in	Lesson	24,	“Using	Triggers”).	First	a	SELECT	is	performed	to	show	that	the
table	is	not	empty,	and	then	all	the	rows	are	deleted	with	a	DELETE	statement.	Another
SELECT	verifies	that,	indeed,	orders_logs	is	empty.	A	ROLLBACK	statement	is	then
used	to	roll	back	all	statements,	and	the	final	SELECT	shows	that	the	table	is	no	longer
empty.

Using	
Oracle	SQL	statements	are	usually	executed	and	written	directly	to	the	database	tables.
This	is	known	as	an	implicit	commit—the	commit	(write	or	save)	operation	happens
automatically.

In	a	transaction	block,	however,	you	might	want	to	force	an	explicit	commit	so	that	data	is
saved	by	using	the	COMMIT	statement,	as	shown	here:

Input
Click	here	to	view	code	image

DELETE	FROM	orderitems	WHERE	order_num	=	20010;
DELETE	FROM	orders	WHERE	order_num	=	20010;
COMMIT;

Analysis

In	this	example,	order	number	20010	is	deleted	entirely	from	the	system.	Because	this
involves	updating	two	database	tables,	orders	and	orderitems,	a	transaction	block	is
used	to	ensure	that	the	order	is	not	partially	deleted.	The	final	COMMIT	statement	writes
the	change	only	if	no	error	occurred.	If	the	first	DELETE	worked,	but	the	second	failed,
the	DELETE	would	not	be	committed	(it	would	effectively	be	automatically	undone).

The	truth	is	that	this	example	is	not	overly	useful.	If	the	first	DELETE	had	failed,	the
transaction	would	have	been	terminated	anyway	and	no	implicit	commit	would	have
occurred.	But	imagine	additional	processing	after	the	COMMIT,	maybe	updating	stock
quantities,	or	logging	changes.	The	ability	to	control	when	commits	occur	then	becomes
important.

Note:	Implicit	Transaction	Closes

After	a	COMMIT	or	ROLLBACK	statement	has	been	executed,	the	transaction	is
automatically	closed	(and	future	changes	will	implicitly	commit).

Using	Savepoints
Simple	ROLLBACK	and	COMMIT	statements	enable	you	to	write	or	undo	an	entire
transaction.	Although	this	works	for	simple	transactions,	more	complex	transactions	might
require	partial	commits	or	rollbacks.

For	example,	the	process	of	adding	an	order	described	previously	is	a	single	transaction.	If
an	error	occurs,	you	only	want	to	roll	back	to	the	point	before	the	orders	row	was
added.	You	do	not	want	to	roll	back	the	addition	to	the	customers	table	(if	there	was
one).

To	support	the	rollback	of	partial	transactions,	you	must	be	able	to	put	bookmarks	at
strategic	locations	in	the	transaction	block.	Then,	if	a	rollback	is	required,	you	can	roll
back	to	one	of	the	placeholders.

These	bookmarks	are	called	savepoints,	and	to	create	one,	use	the	SAVEPOINT	statement,
as	follows:

Input

SAVEPOINT	delete1;

Each	savepoint	takes	a	unique	name	that	identifies	it	so	that,	when	you	roll	back,	Oracle
knows	where	you	are	rolling	back	to.	To	roll	back	to	this	savepoint,	do	the	following:

Input
Click	here	to	view	code	image

ROLLBACK	TO	SAVEPOINT	delete1;

Tip:	The	More	Savepoints	the	Better

You	can	have	as	many	savepoints	as	you	want	in	your	Oracle	SQL	code,	and	the
more	the	better.	Why?	Because	the	more	savepoints	you	have,	the	more	flexibility
you	have	in	managing	rollbacks	exactly	as	you	need	them.

Summary
In	this	lesson,	you	learned	that	transactions	are	blocks	of	SQL	statements	that	must	be
executed	as	a	batch.	You	learned	how	to	use	the	COMMIT	and	ROLLBACK	statements	to
explicitly	manage	when	data	is	written	and	when	it	is	undone.	You	also	learned	how	to	use
savepoints	to	provide	a	greater	level	of	control	over	rollback	operations.

Lesson	26.	Managing	Security

Database	servers	usually	contain	critical	data,	and	ensuring	the	safety	and	integrity	of
that	data	requires	that	access	control	be	used.	In	this	lesson,	you’ll	learn	about	Oracle
access	control	and	user	management.

Understanding	Access	Control
The	basis	of	security	for	your	Oracle	server	is	this:	Users	should	have	appropriate	access
to	the	data	they	need—no	more	and	no	less.	In	other	words,	users	should	not	have	too
much	access	to	too	much	data.

Consider	the	following:

	Most	users	need	to	read	and	write	data	from	tables,	but	few	users	will	ever	need	to
be	able	to	create	and	drop	tables.

	Some	users	might	need	to	read	tables	but	might	not	need	to	update	them.

	You	might	want	to	allow	users	to	add	data,	but	not	delete	data.

	Some	users	(managers	or	administrators)	might	need	rights	to	manipulate	user
accounts,	but	most	should	not.

	You	might	want	users	to	access	data	via	stored	procedures,	but	never	directly.

	You	might	want	to	restrict	access	to	some	functionality	based	on	from	where	the
user	is	logging	in.

These	are	just	examples,	but	they	help	demonstrate	an	important	point.	You	need	to
provide	users	with	the	access	they	need	and	just	the	access	they	need.	This	is	known	as
access	control,	and	managing	access	control	requires	creating	and	managing	user
accounts.

Back	in	Lesson	3,	“Working	with	Oracle,”	you	learned	that	you	need	to	log	in	to	Oracle	to
perform	any	operations.	When	first	installed,	Oracle	creates	a	user	account	named
SYSTEM	that	has	complete	and	total	control	over	the	entire	Oracle	server.	You	might	have
been	using	the	SYSTEM	login	throughout	the	lessons	in	this	book,	and	that	is	okay	when
experimenting	with	Oracle	on	non-live	servers.	But	in	the	real	world,	you	would	never	use
SYSTEM	on	a	day-to-day	basis.	Instead,	you	would	create	a	series	of	accounts,	some	for
administration,	some	for	users,	some	for	developers,	and	so	on.

Note:	Preventing	Innocent	Mistakes

It	is	important	to	note	that	access	control	is	not	just	intended	to	keep	out	users	with
malicious	intent.	More	often	than	not,	data	nightmares	are	the	result	of	an
inadvertent	mistake,	a	mistyped	Oracle	statement,	being	in	the	wrong	database,	or
some	other	user	error.	Access	control	helps	avoid	these	situations	by	ensuring	that
users	are	unable	to	execute	statements	they	should	not	be	executing.

Caution:	Don’t	Use	

The	SYSTEM	login	(actually,	all	the	SYS	logins—there	might	be	multiple	that	start
with	SYS)	should	be	considered	sacred.	Use	it	only	when	absolutely	needed
(perhaps	if	you	cannot	get	into	other	administrative	accounts).	SYSTEM	should
never	be	used	in	day-to-day	Oracle	operations.

Managing	Users
Oracle	user	accounts	and	information	are	stored	in	an	Oracle	database	named
dba_users.	You	usually	do	not	need	to	access	the	dba_users	table	directly	(most
database	administrators	use	client	tools	to	manage	accounts),	but	sometimes	you	might.
One	of	those	times	is	when	you	want	to	obtain	a	list	of	all	user	accounts.	To	do	that,	use
the	following	code:

Input

SELECT	*	FROM	dba_users;

Analysis

This	SELECT	statement	lists	all	the	defined	users	(and	you’ll	be	surprised	by	how	many
default	accounts	there).	You’ll	also	see	account	creation	dates,	last	login	time,	and	more.

Creating	User	Accounts
To	create	a	new	user	account,	use	the	CREATE	USER	statement,	as	shown	here:

Input
Click	here	to	view	code	image

CREATE	USER	ben	IDENTIFIED	BY	“p@$$w0rd”;

Analysis

CREATE	USER	creates	a	new	user	account.	A	password	need	not	be	specified	at	user
account	creation	time,	but	this	example	does	specify	a	password	using	IDENTIFIED	BY
"p@$$w0rd"	(double	quotes	are	needed;	single	quotes	won’t	work).

If	you	were	to	list	the	user	accounts	again,	you	would	see	the	new	account	listed	in	the
output.

Deleting	User	Accounts
To	delete	a	user	account	(along	with	any	associated	rights	and	privileges),	use	the	DROP
USER	statement	as	shown	here:

Input

DROP	USER	ben;

Note:	No	Renaming

Oracle	doesn’t	allow	users	to	be	renamed.	If	you	need	to	rename	a	user,	you’ll	need
to	DROP	and	CREATE	again.

Setting	Access	Rights
With	user	accounts	created,	you	must	next	assign	access	rights	and	privileges.	Newly
created	user	accounts	have	no	access	at	all.	They	can	log	in	to	Oracle	but	will	see	no	data
and	will	be	unable	to	perform	any	database	operations.

Rights	grants	are	referred	to	as	privileges,	and	they	are	stored	in	the
sys.dba_sys_privs	table:

Input

SELECT	PRIVILEGE
FROM	sys.dba_sys_privs
WHERE	grantee	=	‘ben’;

Analysis

Because	no	privileges	have	been	defined,	this	statement	will	return	rows.	Try	it	again	for
user	SYSTEM	and	you’ll	see	that	everything	is	allowed.

To	set	rights,	the	GRANT	statement	is	used.	At	a	minimum,	GRANT	requires	that	you
specify:

	The	privilege	being	granted

	The	item	being	granted	access	to

	The	user	name

The	following	example	demonstrates	the	use	of	GRANT:

Input
Click	here	to	view	code	image

GRANT	SELECT	ON	customers	TO	ben;

Analysis

This	GRANT	allows	the	use	of	SELECT	on	customers.	By	granting	SELECT	access
only,	user	ben	has	read-only	access	to	the	table.

Multiple	grants	may	be	specified	at	once:

Input
Click	here	to	view	code	image

GRANT	SELECT,	INSERT,	UPDATE	ON	customers	TO	ben;

Analysis

This	GRANT	allows	the	use	of	SELECT,	INSERT,	and	UPDATE	on	table	customers.
So	user	ben	would	not	be	able	to	DELETE	rows,	and	definitely	not	ALTER	or	DROP	the
table.

Tip:	Use	PL/SQL

You	can	use	PL/SQL	to	create	loops	to	batch	the	assigning	of	privileges.	Of	course,
you	could	create	stored	procedures	to	do	this,	too.

The	opposite	of	GRANT	is	REVOKE,	which	is	used	to	revoke	specific	rights	and
permissions.	Here	is	an	example:

Input
Click	here	to	view	code	image

REVOKE	INSERT,	UPDATE,	DELETE	ON	customers	FROM	ben;

Analysis

Here	GRANT	TO	is	replaced	with	REVOKE	FROM.	This	REVOKE	statement	takes	away
access	granted	to	user	ben.	The	access	being	revoked	must	exist	or	an	error	will	be
thrown.

Table	26.1	lists	each	of	the	table-level	rights	and	privileges	that	may	be	granted	or
revoked.	Table	26.2	lists	some	of	the	other	important	database	rights	and	privileges;	these
privileges	are	usually	tied	to	specific	objects	or	can	be	used	with	ANY.

TABLE	26.1	Table	Rights	and	Privileges

TABLE	26.2	Database	Rights	and	Privileges

Using	GRANT	and	REVOKE	in	conjunction	with	the	privileges	listed	in	Tables	26.1	and
26.2,	you	have	complete	control	over	what	users	can	and	cannot	do	with	your	precious
data.

Changing	Passwords
To	change	user	passwords,	use	the	ALTER	USER	statement,	as	shown	here:

Input
Click	here	to	view	code	image

ALTER	USER	ben	IDENTIFIED	BY	“l0ngerp@$$w0rd”	REPLACE	“p@$$w0rd”;

Summary
In	this	lesson,	you	learned	about	access	control	and	how	to	secure	your	Oracle	server	by
assigning	specific	rights	to	users.	As	you	can	imagine,	there	is	a	lot	more	to	this	advanced
topic,	and	Oracle	administrators	should	dedicate	the	time	to	fully	understand	managing
DBMS	security.

Appendix	A.	The	Example	Tables

Writing	SQL	statements	requires	a	good	understanding	of	the	underlying	database	design.
Without	knowing	what	information	is	stored	in	what	table,	how	tables	are	related	to	each
other,	and	the	actual	breakup	of	data	within	a	row,	it	is	impossible	to	write	effective	SQL.

You	are	strongly	advised	to	actually	try	every	example	in	every	lesson	in	this	book.	All	the
lessons	use	a	common	set	of	data	files.	To	assist	you	in	better	understanding	the	examples
and	to	enable	you	to	follow	along	with	the	lessons,	this	appendix	describes	the	tables	used,
their	relationships,	and	how	to	obtain	them.

Understanding	the	Sample	Tables
The	tables	used	throughout	this	book	are	part	of	an	order	entry	system	used	by	an
imaginary	distributor	of	paraphernalia	that	might	be	needed	by	your	favorite	cartoon
characters	(yes,	cartoon	characters;	no	one	said	that	learning	Oracle	needed	to	be	boring).
The	tables	are	used	to	perform	several	tasks,	including:

	Manage	vendors

	Manage	product	catalogs

	Manage	customer	lists

	Enter	customer	orders

Making	this	all	work	requires	six	tables	that	are	closely	interconnected	as	part	of	a
relational	database	design.	A	description	of	each	of	the	tables	appears	in	the	following
sections.

Note:	Simplified	Examples

The	tables	used	here	are	by	no	means	complete.	A	real-world	order	entry	system
would	have	to	keep	track	of	lots	of	other	data	that	has	not	been	included	here	(for
example,	payment	and	accounting	information,	shipment	tracking,	and	more).
However,	these	tables	do	demonstrate	the	kinds	of	data	organization	and
relationships	you	will	encounter	in	most	real	installations.	You	can	apply	these
techniques	and	technologies	to	your	own	databases.

What	follows	is	a	description	of	each	of	the	six	tables,	along	with	the	name	of	the	columns
within	each	table	and	their	descriptions.

Note:	Why	Out	of	Order?

If	you	are	wondering	why	the	six	tables	are	listed	in	the	order	they	are,	it	is	due	to
their	dependencies.	Because	the	products	tables	is	dependent	on	the	vendors
table,	vendors	is	listed	first,	and	so	on.

The	 	Table
The	vendors	table	stores	the	vendors	whose	products	are	sold	(see	Table	A.1).	Every
vendor	has	a	record	in	this	table,	and	that	vendor	ID	(the	vend_id)	column	is	used	to
match	products	with	vendors.

TABLE	A.1	vendors	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	vend_id	as	its
primary	key.	vend_id	is	an	auto	increment	field.

The	 	Table
The	products	table	contains	the	product	catalog,	one	product	per	row	(see	Table	A.2).
Each	product	has	a	unique	ID	(the	prod_id	column)	and	is	related	to	its	vendor	by
vend_id	(the	vendor’s	unique	ID).

TABLE	A.2	products	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	prod_id	as	its
primary	key.

	To	enforce	referential	integrity,	a	foreign	key	should	be	defined	on	vend_id,
relating	it	to	vend_id	in	vendors.

The	 	Table
The	customers	table	stores	all	customer	information	(see	Table	A.3).	Each	customer
has	a	unique	ID	(the	cust_id	column).

TABLE	A.3	customers	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	cust_id	as	its
primary	key.	cust_id	is	an	auto	increment	field.

The	 	Table
The	orders	table	stores	customer	orders	(but	not	order	details),	as	shown	in	Table	A.4.
Each	order	is	uniquely	numbered	(the	order_num	column).	Orders	are	associated	with
the	appropriate	customers	by	the	cust_id	column	(which	relates	to	the	customer’s
unique	ID	in	the	customers	table).

TABLE	A.4	orders	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	order_num	as
its	primary	key.	order_num	is	an	auto	increment	field.

	To	enforce	referential	integrity,	a	foreign	key	should	be	defined	on	cust_id,
relating	it	to	cust_id	in	customers.

The	 	Table
The	orderitems	table	stores	the	actual	items	in	each	order,	one	row	per	item	per	order
(see	Table	A.5).	For	every	row	in	orders,	there	are	one	or	more	rows	in	orderitems.
Each	order	item	is	uniquely	identified	by	the	order	number	plus	the	order	item	(first	item
in	order,	second	item	in	order,	and	so	on).	Order	items	are	associated	with	their
appropriate	order	by	the	order_num	column	(which	relates	to	the	order’s	unique	ID	in
orders).	In	addition,	each	order	item	contains	the	product	ID	of	the	item	orders	(which
relates	the	item	back	to	the	products	table).

TABLE	A.5	orderitems	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	order_num
and	order_item	as	its	primary	keys.

	To	enforce	referential	integrity,	foreign	keys	should	be	defined	on	order_num,
relating	it	to	order_num	in	orders,	and	prod_id,	relating	it	to	prod_id	in
products.

The	 	Table
The	productnotes	table	stores	notes	associated	with	specific	products	(see	Table	A.6).
Not	all	products	may	have	associated	notes,	and	some	products	may	have	many	associated
notes.

TABLE	A.6	productnotes	Table	Columns

	All	tables	should	have	primary	keys	defined.	This	table	should	use	note_id	as	its
primary	key.

	To	enforce	referential	integrity,	a	foreign	key	should	be	defined	on	prod_id,
relating	it	to	prod_id	in	products.

Appendix	B.	Oracle	PL/SQL	Datatypes

As	explained	in	Lesson	1,	“Understanding	SQL,”	datatypes	are	basically	rules	that	define
what	data	may	be	stored	in	a	column	and	how	that	data	is	actually	stored.

Datatypes	are	used	for	several	reasons:

	Datatypes	enable	you	to	restrict	the	type	of	data	that	can	be	stored	in	a	column.	For
example,	a	numeric	datatype	column	only	accepts	numeric	values.

	Datatypes	allow	for	more	efficient	storage,	internally.	Numbers	and	date	time	values
can	be	stored	in	a	more	condensed	format	than	text	strings.

	Datatypes	allow	for	alternate	sorting	orders.	If	everything	is	treated	as	strings,	1
comes	before	10,	which	comes	before	2.	(Strings	are	sorted	in	dictionary	sequence,
one	character	at	a	time	starting	from	the	left.)	As	numeric	datatypes,	the	numbers
would	be	sorted	correctly.

When	designing	tables,	pay	careful	attention	to	the	datatypes	being	used.	Using	the	wrong
datatype	can	seriously	impact	your	application.	Changing	the	datatypes	of	existing
populated	columns	is	not	a	trivial	task.	(In	addition,	doing	so	can	result	in	data	loss.)

Although	this	appendix	is	by	no	means	a	complete	tutorial	on	datatypes	and	how	they	are
to	be	used,	it	explains	the	major	Oracle	datatype	types,	and	what	they	are	used	for.

String	Datatypes
The	most	commonly	used	datatypes	are	string	datatypes.	These	store	strings:	for	example,
names,	addresses,	phone	numbers,	and	ZIP	Codes.	As	listed	in	Table	B.1,	there	are
basically	two	types	of	string	datatype	that	you	can	use—fixed-length	strings	and	variable-
length	strings.

TABLE	B.1	String	Datatypes

Fixed-length	strings	are	datatypes	that	are	defined	to	accept	a	fixed	number	of	characters,
and	that	number	is	specified	when	the	table	is	created.	For	example,	you	might	allow	30
characters	in	a	first-name	column	or	11	characters	in	a	Social	Security	Number	column
(the	exact	number	needed	allowing	for	the	two	dashes).	Fixed-length	columns	do	not

allow	more	than	the	specified	number	of	characters.	They	also	allocate	storage	space	for
as	many	characters	as	specified.	So,	if	the	string	Ben	is	stored	in	a	30-character	first-name
field,	a	full	30	bytes	are	stored.	CHAR	is	an	example	of	a	fixed-length	string	type.

Variable-length	strings	store	text	of	variable	length.	Some	variable-length	datatypes	have	a
defined	maximum	size.	Others	are	entirely	variable.	Either	way,	only	the	data	specified	is
saved	(and	no	extra	data	is	stored).	VARCHAR	is	an	example	of	a	variable-length	string
type.

If	variable-length	datatypes	are	so	flexible,	why	would	you	ever	want	to	use	fixed-length
datatypes?	The	answer	is	performance.	Oracle	can	sort	and	manipulate	fixed-length
columns	far	more	quickly	than	it	can	sort	variable-length	columns.	In	addition,	Oracle
does	not	allow	you	to	index	variable-length	columns	(or	the	variable	portion	of	a	column).
This	also	dramatically	affects	performance.

Tip:	Using	Quotes

Regardless	of	the	form	of	string	datatype	being	used,	string	values	must	always	be
surrounded	by	quotes	(single	quotes	are	often	preferred).

Caution:	When	Numeric	Values	Are	Not	Numeric	Values

You	might	think	that	phone	numbers	and	ZIP	Codes	should	be	stored	in	numeric
fields	(after	all,	they	only	store	numeric	data),	but	doing	so	would	not	be	advisable.
If	you	store	the	ZIP	Code	01234	in	a	numeric	field,	the	number	1234	would	be
saved.	You	would	actually	lose	a	digit.

The	basic	rule	to	follow	is:	If	the	number	is	used	in	calculations	(sums,	averages,
and	so	on),	it	belongs	in	a	numeric	datatype	column.	If	it	is	used	as	a	literal	string
(that	happens	to	contain	only	digits),	it	belongs	in	a	string	datatype	column.

Numeric	Datatypes
Numeric	datatypes	store	numbers.	Unlike	most	DBMSs,	Oracle	really	supports	one	major
numeric	type	that	supports	both	fixed-	and	floating-point	numbers.	Table	B.2	lists	the
Oracle	numeric	datatypes.

TABLE	B.2	Numeric	Datatypes

Tip:	Not	Using	Quotes

Unlike	strings,	numeric	values	should	never	be	enclosed	within	quotes.

Tip:	Storing	Currency

There	is	no	special	Oracle	datatype	for	currency	values;	use	NUMBER(8,2)
instead.

Date	and	Time	Datatypes
Oracle	uses	special	datatypes	for	the	storage	of	date	and	time	values,	as	listed	in	Table
B.3.

TABLE	B.3	Date	and	Time	Datatypes

Binary	Datatypes
Binary	datatypes	are	used	to	store	all	sorts	of	data	(even	binary	information),	such	as
graphic	images,	multimedia,	and	word	processor	documents	(see	Table	B.4).

TABLE	B.4	Binary	Datatypes

Note:	Datatypes	in	Use

If	you	would	like	to	see	a	real-world	example	of	how	different	databases	are	used,
see	the	sample	table	creation	scripts	(described	in	Appendix	A,	“The	Example
Tables”).

Appendix	C.	Oracle	PL/SQL	Reserved	Words	and
Keywords

Oracle	PL/SQL	is	made	up	of	keywords—special	words	that	are	used	in	performing	SQL
operations.	Special	care	must	be	taken	to	not	use	these	keywords	when	naming	databases,
tables,	columns,	and	any	other	database	objects.

ALL

ALTER

AND

ANY

ARRAY

ARROW

AS

ASC

AT

BEGIN

BETWEEN

BY

CASE

CHECK

CLUSTER

CLUSTERS

COLAUTH

COLUMNS

COMPRESS

CONNECT

CRASH

CREATE

CURRENT

DECIMAL

DECLARE

DEFAULT

DELETE

DESC

DISTINCT

DROP

ELSE

END

EXCEPTION

EXCLUSIVE

EXISTS

FETCH

FOR

FORM

FROM

GOTO

GRANT

GROUP

HAVING

IDENTIFIED

IF

IN

INDEX

INDEXES

INSERT

INTERSECT

INTO

IS

LIKE

LOCK

MINUS

MODE

NOCOMPRESS

NOT

NOWAIT

NULL

OF

ON

OPTION

OR

ORDER,OVERLAPS

PRIOR

PROCEDURE

PUBLIC

RANGE

RECORD

RESOURCE

REVOKE

SELECT

SHARE

SIZE

SQL

START

SUBTYPE

TABAUTH

TABLE

THEN

TO

TYPE

UNION

UNIQUE

UPDATE

USE

VALUES

VIEW

VIEWS

WHEN

WHERE

WITH

In	addition	to	the	Oracle	PL/SQL	reserved	words,	the	following	list	of	words	(while	legal
to	use)	have	special	meaning	to	Oracle,	and	their	use	is	not	recommended.

A

ADD

AGENT

AGGREGATE

ARRAY

ATTRIBUTE

AUTHID

AVG

BFILE_BASE

BINARY

BLOB_BASE

BLOCK

BODY

BOTH

BOUND

BULK

BYTE

C

CALL

CALLING

CASCADE

CHAR

CHAR_BASE

CHARACTER

CHARSET

CHARSETFORM

CHARSETID

CLOB_BASE

CLOSE

COLLECT

COMMENT

COMMIT

COMMITTED

COMPILED

CONSTANT

CONSTRUCTOR

CONTEXT

CONVERT

COUNT

CURSOR

CUSTOMDATUM

DANGLING

DATA

DATE

DATE_BASE

DAY

DEFINE

DETERMINISTIC

DOUBLE

DURATION

ELEMENT

ELSIF

EMPTY

ESCAPE

EXCEPT

EXCEPTIONS

EXECUTE

EXIT

EXTERNAL

FINAL

FIXED

FLOAT

FORALL

FORCE

FUNCTION

GENERAL

HASH

HEAP

HIDDEN

HOUR

IMMEDIATE

INCLUDING

INDICATOR

INDICES

INFINITE

INSTANTIABLE

INT

INTERFACE

INTERVAL

INVALIDATE

ISOLATION

JAVA

LANGUAGE

LARGE

LEADING

LENGTH

LEVEL

LIBRARY

LIKE2

LIKE4

LIKEC

LIMIT

LIMITED

LOCAL

LONG

LOOP

MAP

MAX

MAXLEN

MEMBER

MERGE

MIN

MINUTE

MOD

MODIFY

MONTH

MULTISET

NAME

NAN

NATIONAL

NATIVE

NCHAR

NEW

NOCOPY

NUMBER_BASE

OBJECT

OCICOLL

OCIDATE

OCIDATETIME

OCIDURATION

OCIINTERVAL

OCILOBLOCATOR

OCINUMBER

OCIRAW

OCIREF

OCIREFCURSOR

OCIROWID

OCISTRING

OCITYPE

ONLY

OPAQUE

OPEN

OPERATOR

ORACLE

ORADATA

ORGANIZATION

ORLANY

ORLVARY

OTHERS

OUT

OVERRIDING

PACKAGE

PARALLEL_ENABLE

PARAMETER

PARAMETERS

PARTITION

PASCAL

PIPE

PIPELINED

PRAGMA

PRECISION

PRIVATE

RAISE

RANGE

RAW

READ

RECORD

REF

REFERENCE

REM

REMAINDER

RENAME

RESULT

RETURN

RETURNING

REVERSE

ROLLBACK

ROW

SAMPLE

SAVE

SAVEPOINT

SB1

SB2

SB4

SECOND

SEGMENT

SELF

SEPARATE

SEQUENCE

SERIALIZABLE

SET

SHORT

SIZE_T

SOME

SPARSE

SQLCODE

SQLDATA

SQLNAME

SQLSTATE

STANDARD

STATIC

STDDEV

STORED

STRING

STRUCT

STYLE

SUBMULTISET

SUBPARTITION

SUBSTITUTABLE

SUBTYPE

SUM

SYNONYM

TDO

THE

TIME

TIMESTAMP

TIMEZONE_ABBR

TIMEZONE_HOUR

TIMEZONE_MINUTE

TIMEZONE_REGION

TRAILING

TRANSAC

TRANSACTIONAL

TRUSTED

TYPE

UB1

UB2

UB4

UNDER

UNSIGNED

UNTRUSTED

USE

USING

VALIST

VALUE

VARIABLE

VARIANCE

VARRAY

VARYING

VOID

WHILE

WORK

WRAPPED

WRITE

YEAR

ZONE

Index

Symbols
||	operator,	93–94

%	(percent	sign),	70

;	(semicolon),	35

_	(underscore),	72–73

*	(wildcard),	37

A
ABS()	function,	107

access	control,	239–240

access	rights,	setting,	242–243

passwords,	244

user	accounts,	241

users,	240–241

access	rights,	setting,	242–243

Add_Month(),	103

advantages

of	IN	operator,	67

of	SQL,	11

AFTER	trigger,	225,	228

aggregate	functions,	109–110

ALL	argument,	117

AVG(),	110–111

combining,	118–119

COUNT(),	112–113

defined,	109

DISTINCT	argument,	117

distinct	values,	117–118

joins,	160–161

MAX(),	113–114

MIN(),	114–115

naming	aliases,	119

overview,	109

SUM(),	115–116

aliases

alternative	uses,	96

concatenating	fields,	95–96

creating,	153

fields,	concatenating,	95–96

table	names,	153–154

alphabetical	sort	order,	47–49

ALTER	TABLE,	190–193

ALTER	USER,	244

anchors,	regular	expressions	(PL/SQL),	87–88

AND	keyword,	58

AND	operator,	combining	WHERE	clause,	61–62

Application	Express,	25

applications,	filtering	query	results,	52

ASC	keyword,	query	results	sort	order,	49

AS	keyword,	95–96

auto	increment,	174

AVG()	function,	110–111

DISTINCT	argument,	117

B
basic	character	matching,	regular	expressions	(PL/SQL),	76–79

basic	syntax,	stored	procedures,	208–209

BEFORE	triggers,	225,	228

best	practices

joins,	161

primary	keys,	10

BETWEEN	keyword,	58

BETWEEN	operator	(WHERE	clause),	57

breaking	up,	data,	8

C
calculated	fields,	91–92

concatenating	fields,	92–94

column	aliases,	95–96

mathematical	calculations,	96–98

overview,	91–92

subqueries,	136–139

views,	202–203

calculated	values,	totaling,	116

calculations,	testing,	98

cartesian	product,	145

case	insensitive	equality	comparisons,	55

case	sensitivity,	71

query	result	sort	order,	49

SQL	statements,	35

character	classes,	matching,	84–85

characters

%	(percent	sign)	wildcard,	70–71

_	(underscore)	wildcard,	72

clauses,	44

GROUP	BY	clause,	122–123,	126–128

HAVING	clause,	124–125

ORDER	BY	clause,	45–46,	52,	126–128

positioning,	53,	59

SELECT	clause,	ordering,	129

WHERE	clause.	See	WHERE	clause

client-based	results	formatting,	92

clients,	14

client-server	software,	Oracle,	13–15

client	tools,	Oracle,	15–16

CLOSE	statement,	217

closing	cursors,	217–218

color	coding,	Oracle	SQL	Developer,	42

column	aliases

alternative	uses,	96

concatenating	fields,	95–96

columns,	7–8,	92.	See	also	fields

concepts,	7–8

derived	columns,	96

fully	qualified	names,	145

GROUP	BY	clause,	123

individual	columns,	111

INSERT	SELECT	statements,	177

INSERT	statement	and,	173

INSERT	statement,	omitting	columns,	175

multiple,	sorting	query	results	by,	45–46

NULL	value	columns,	187–189

omitting,	175

padded	spaces,	RTrim()	function,	94–95

primary	keys,	9–10

retrieving,	33–37

all	columns,	37–38

separating	names	in	queries,	36

sorting	data

descending	on	multiple	columns,	49

multiple	columns,	45–47

subquery	result	restrictions,	135

updating	multiple,	181

values,	deleting,	181

combined	queries,	163

creating,	164–166

duplicate	rows	and,	167–168

including/eliminating	duplicate	rows,	167

overview,	163

rules,	166

sorting	results,	168–169

combining

aggregate	functions,	118–119

WHERE	clause,	61

AND	operator,	61–62

order	of	evaluation,	63–65

OR	operator,	62–63

comments,	40–42

COMMIT	statement	(transaction	processing),	236–237

commits	(transaction	processing),	defined,	235

complex	joins,	views,	198–199

concatenating,	93

fields,	92–95

aliases,	95–96

column	aliases,	95–96

mathematical	calculations,	96–98

connecting	Oracle	SQL	Developer	to	Oracle	servers,	25–26

constructs,	programming	constructs	(stored	procedures),	209–210

controlling	transactions,	235

COMMIT,	236–237

ROLLBACK,	236

SAVEPOINT,	237–238

correlated	subqueries,	138

COS()	function,	107

COUNT()	function,	110–113

DISTINCT	argument,	118

joins	and,	160

COUNT*	subquery,	136

CREATE	OR	REPLACE	TRIGGER,	227

CREATE	PROCEDURE,	208

create.sql,	30

CREATE	TABLE,	185–187

DEFAULT	keyword,	189–190

CREATE	TRIGGER,	224

CREATE	USER	statement,	241

CREATE	VIEW	statement,	197

cursor	data,	220–222

fetching,	218–220

cursors,	215

closing,	217–218

creating,	216–217

data,	fetching,	218–220

explicit	cursors,	216

implementing,	216

implicit	cursors,	216

opening,	217–218

overview,	215

customers	table,	247

custom	workspaces,	creating,	24–25

D
data

breaking	correctly	(columns),	8

breaking	up,	8

cursor	data,	220–222

fetching,	218–220

deleting,	181–182

guidelines,	183

filtering

IN	operator,	65–67

NOT	operator,	67–68

WHERE	clause,	51–53

inserting,	171

complete	rows,	172–176

retrieved	data,	176–177

retrieving

all	columns,	37–38

distinct	rows,	38–39

individual	columns,	33–35

multiple	columns,	36–37

sorting,	43–45

by	multiple	columns,	45–47

by	nonselected	columns,	45

specifying	sort	direction,	47–49

updating,	179

guidelines,	183

database	management	systems.	See	DBMS	(Database	Management	System)

databases,	5–8.	See	also	tables

columns,	7–8

concepts,	5–6

datatypes,	7–8

defined,	6

primary	keys,	9–10

rows,	8–9

schemas,	7

database	servers,	14

data	grouping,	121–122

data	insertion,	171

inserting

complete	rows,	172–176

retrieved	data,	176–177

views,	204

WHERE	clause,	202

date	and	time	functions,	100,	103–107

dates,	104

DBMS	(Database	Management	System),	1,	6

interactive	tools,	143

Oracle,	13

query	sort	order,	44

decimal	rounding,	52

DECLARE	statement,	219

cursors,	creating,	216–217

dedicated	Oracle	instances,	22–24

default	system	instance,	22

default	values,	tables,	189–190

DEFAULT	values,	190

DELETE	FROM,	182

DELETE	statement,	181–182

guidelines,	183

WHERE	clause,	182

DELETE	triggers,	228–230

deleting

column	values,	181

data,	181–183

tables,	193

user	accounts,	241

derived	columns,	96

DESC	keyword,	47–49

query	results	sort	order,	47–49

dictionary	sort	order	(query	results),	49

DISTINCT	argument,	AVG()	function,	117

DISTINCT	keyword,	39

distinct	rows,	retrieving,	38–39

distinct	values,	aggregate	functions,	117–118

DROP	command,	213

dropping

stored	procedures,	213

triggers,	225

DROP	TABLE	statement,	193

DROP	TRIGGER,	225

DROP	USER	statement,	241

duplicate	rows,	including/eliminating,	167

E
empty	strings,	189

equality	operator	(WHERE	clause),	53,	243

equijoins,	148

escaping,	72

ETrim()	function,	95

example	tables,	28–29

creating,	30–31

obtaining	table	scripts,	28–30

execute,	28

executing	stored	procedures,	209

EXP()	function,	107

explicit	commits,	236

explicit	cursors,	216

Extract(),	103

F
FETCH,	218–220

fetching	cursor	data,	218–220

fields,	92.	See	also	columns

calculated	fields,	91–92

concatenating	fields,	92–96

mathematical	calculations,	96–98

overview,	91–92

performing	mathematical	calculations,	96–98

subqueries,	136–139

views,	202–203

concatenating,	92–95

aliases,	95–96

filter	condition,	51

filtering

AND	operator,	61–62

application	level,	52

data

IN	operator,	65–67

NOT	operator,	67–68

WHERE	clause,	51–53

by	date,	104

groups,	123–126

IN	operator,	65–67

multiple	criteria,	61

NOT	operator,	67–68

order	of	evaluation,	63–65

OR	operator,	62–63

by	subqueries,	131–135

views,	unwanted	data,	201–202

filters

%	(percent	sign)	wildcard,	70–71

_	(underscore)	wildcard,	72–73

foreign	keys,	142

ALTER	TABLE,	192

formatting

retrieved	data	with	views,	199–200

server–based	compared	to	client–based,	92

statements,	187

subqueries,	134

four-digit	years,	104

FROM	clause

creating	joins,	144

subqueries,	139

FROM	keyword,	34

fully	qualified	column	names,	145

fully	qualified	table	names,	40

functions,	99,	207

aggregate	functions,	109–110

AVG()	function,	110–111

combining,	118–119

COUNT()	function,	112–113

distinct	values,	117–118

joins,	160–161

MAX()	function,	113–114

MIN()	function,	114–115

SUM()	function,	115–116

date	and	time	functions,	100,	103–107

defined,	99

numeric	functions,	100,	107

RTrim(),	94–95

system	functions,	100

text	functions,	100

text	manipulation	functions,	100–102

types	of,	100

G
GRANT,	242–243

greater	than	operator	(WHERE	clause),	53

greater	than	or	equal	to	operator	(WHERE	clause),	53

GROUP	BY	clause,	122–123,	126–128

grouping	versus	sorting,	126–128

grouping	data,	121–122

filtering	groups,	123–126

GROUP	BY	clause,	122–123

nested	groups,	123

groups

creating,	122–123

filtering,	123–126

nested	groups,	123

guidelines	for	updating/deleting	data,	183

H
HAVING	clause,	124–125

grouping	data,	124

I
implicit	commit,	236

implicit	cursors,	216

IN	keyword,	67

inner	joins,	148–149

IN	operator,	65–67

INSERT,	171–175

inserting	data,	171

complete	rows,	172–176

retrieved	data,	176–177

INSERT	SELECT,	176–177

INSERT	statement

columns	lists,	175

completing	rows,	172–174

omitting	columns,	175

overview,	171

query	data,	176–177

security	privileges,	171

VALUES,	175

INSERT	trigger,	225–228

installing	Oracle,	19–20

instances

dedicated	Oracle	instances,	creating,	22

default	system	instance,	22

matching	multiple	instances,	regular	expressions,	85–87

J
joining	multiple	tables,	149–151

joins,	141

aggregate	functions,	160–161

best	practices,	161

complex	joins,	views,	198–199

creating,	144–145

cross	joins,	148

equijoins,	148

inner	joins,	148–149

left	outer	join,	160

natural	joins,	157–158

outer	joins,	158–160

performance,	150

reasons	for	using,	143

right	outer	join,	160

self	joins,	154–157

versus	subqueries,	157

views,	198–199

WHERE	clause,	145–148

K
keys

foreign	keys,	142

ALTER	TABLE,	192

primary	keys,	9–10,	142

keywords,	33,	255–257

AND,	62

AS,	95–96

ASC,	query	results	sort	order,	49

BETWEEN,	58

DEFAULT,	table	values,	189–190

DESC,	47–49

DISTINCT,	39

FROM,	34

IN,	67

NOT,	67

OR,	63

L
languages,	SQL,	11

Last_Day(),	103

left	outer	join,	160

Length(),	101

less	than	operator	(WHERE	clause),	53

less	than	or	equal	to	operator	(WHERE	clause),	53

LIKE	operator,	69,	88

searching	with

percent	sign	(%),	70

underscore	(_),	72–73

LOOP	statement,	222

Lower()	function,	101

LTrim()	function,	95,	101

M
Mac	users,	Oracle,	17

matching	character	classes,	regular	expressions	(PL/SQL),	84–85

matching	multiple	instances,	regular	expressions	(PL/SQL),	85–87

matching	one	of	several	characters,	regular	expressions	(PL/SQL),	80–81

matching	ranges,	regular	expressions	(PL/SQL),	82–83

matching	special	characters,	regular	expressions	(PL/SQL),	83–84

mathematical	calculations,	performing	in	fields,	96–98

mathematical	operators,	98

MAX()	function,	110,	113–114

non–numeric	data,	114

NULL	values,	114

MIN()	function,	110,	114–115

DISTINCT	argument,	118

NULL	values,	115

Months_Between(),	103

multi-event	triggers,	231

multiple	columns

retrieving,	36–37

sorting	data,	45–47

multiple	instances,	matching	regular	expressions,	85–87

multiple	tables,	joining,	149–151

multiple	worksheets,	28

N
names

fully	qualified	column	names,	145

fully	qualified	table	names,	40

natural	joins,	157–158

navigating	tables,	cursors,	215

nested	groups,	123

Next_Day(),	103

non–equality	operator	(WHERE	clause),	53,	243

NOT	NULL,	189

NOT	operator,	67–68

NULL,	59

NULL	keyword,	updating	columns,	181

NULL	values,	187–189

AVG()	function,	110–111

compared	to	empty	strings,	189

COUNT()	function,	113

empty	strings,	189

table	columns,	187–189

numeric	datatypes,	253–254

numeric	functions,	100,	107

O
omitting	columns,	175

opening	cursors,	217–218

OPEN	statement,	217

operators

defined,	61

grouping	related,	64

HAVING	clause,	124

IN	operator,	65–67

LIKE	operator,	69

mathematical	operators,	98

NOT	operator,	67–68

||	operator,	93–94

WHERE	clause,	53

checking	against	a	single	value,	54–56

checking	for	nonmatches,	56–57

checking	for	no	value,	58–59

checking	for	range	of	values,	57–58

Oracle,	13

client–server	software,	13–15

client	tools,	15–16

installing,	19–20

Mac	users,	17

PL/SQL,	15

savepoints,	237

setting	up

installing	software,	19–20

obtaining	software,	18–19

required	software,	16–18

Oracle	Database	Express	Edition,	18

Oracle	Express	Edition,	creating	custom	workspaces,	24–25

Oracle	servers	connecting	to	Oracle	SQL	Developer,	25–26

Oracle	SQL	Developer,	19,	32

color	coding,	42

connecting	to	Oracle	servers,	25–26

overview,	27–28

ORDER	BY	clause,	45–46,	52,	126–128

ascending/descending	sort	order,	47–49

compared	to	GROUP	BY	clause,	126–128

SELECT	statement,	44

sorting	by	multiple	columns,	45–46

views,	197

ordering

SELECT	clause,	129

sequence	number,	47

orderitems	table,	248–249

order	of	evaluation,	combining	(WHERE	clause),	63–65

orders	table,	248

OR	matches,	regular	expressions	(PL/SQL),	79–80

OR	operator,	combining	(WHERE	clause),	62–63

outer	joins,	158–160

P
parentheses,	WHERE	clause,	65

passwords,	access	control,	244

percent	sign	(%),	wildcard	searches,	70

performance,	151

joins,	150

subqueries,	136

views,	197

performing	mathematical	calculations,	calculated	fields,	96–98

PI()	function,	107

placeholders,	235–238

PL/SQL	(Procedural	Language/Structured	Query	Language),	15

regular	expressions,	76

anchors,	87–88

basic	character	matching,	76–79

matching	character	classes,	84–85

matching	multiple	instances,	85–87

matching	one	of	several	characters,	80–81

matching	ranges,	82–83

matching	special	characters,	83–84

OR	matches,	79–80

populate.sql,	30

populating	tables,	31–32

portability,	99

INSERT	statements	and,	175

predicates	(operators),	70

primary	keys,	9–10,	142

best	practices,	10

concepts,	9–10

Customer	example	table,	248

importance,	9

OrderItems	example	table,	249

Orders	example	table,	248

Products	example	table,	247,	250

updating	tables,	191–192

Vendors	example	table,	247

privileges,	242–243

Procedural	Language/Structured	Query	Language.	See	PL/SQL

processing

subqueries,	133

transactions.	See	transaction	processing

productnotes	table,	249–250

products	table,	247

programming	constructs,	stored	procedures,	209–210

Q
queries,	131

calculated	fields,	136–139

concatenating	fields,	92–96

mathematical	calculations,	96–98

overview,	91–92

combined	queries,	163

creating,	164–166

including/eliminating	duplicate	rows,	167

sorting	results,	168–169

combining,	133

data	formatting,	37

defined,	131

filtering	by,	131–134

INSERT	statement	and,	176–177

multiple	WHERE	clauses,	166

overview,	131

sorting	results,	43–44

ascending/descending	order,	47–49

case	sensitivity,	49

by	multiple	columns,	45–46

nonselected	columns	and,	45

subqueries,	139

table	aliases,	154

views,	195

wildcards	(*),	37–38

quotes,	WHERE	clause,	57

R
records,	compared	to	rows,	9

referential	integrity,	143

reformatting	retrieved	data	with	views,	199–201

REGEXP_INSTR(),	76

REGEXP_LIKE(),	76,	88

REGEXP_REPLACE(),	76

REGEXP_SUBSTR(),	76

regular	expressions,	75

PL/SQL,	76

anchors,	87–88

basic	character	matching,	76–79

matching	character	classes,	84–85

matching	multiple	instances,	85–87

matching	one	of	several	characters,	80–81

matching	ranges,	82–83

matching	special	characters,	83–84

OR	matches,	79–80

relational	databases,	sort	order	and,	44

relational	tables,	141–143

removing	views,	197

renaming	tables,	193

REPEAT	UNTIL	statement,	222

repetition	metacharacters,	85

REPLACE	PROCEDURE,	208

reserved	words,	255

restrictions,	views,	197

result	sets,	215

retrieved	data

inserting,	176–177

reformatting	with	views,	199–201

retrieving	data

all	columns,	37–38

distinct	rows,	38–39

individual	columns,	33–35

multiple	columns,	36–37

reusable	views,	199

REVOKE	statement,	243–244

RIGHT	keyword	(outer	joins),	159

right	outer	join,	160

ROLLBACK	command	(transaction	processing),	236

rollbacks	(transaction	processing)

COMMIT	statement,	237

defined,	235

ROLLBACK	command,	236

savepoints	and,	237–238

statements,	238

rows,	8–9

cursors,	215

duplicate	rows,	167

inserting	complete	rows,	172–176

INSERT	statement,	172–174

retrieving	distinct	rows,	38–39

RTrim()	function,	94–95,	99–101

rules

UNION,	166

views,	197

run	scripts	versus	run	statements,	28

run	statements,	28

S
sample	tables,	245

customers	table,	247

orderitems	table,	248–249

orders	table,	248

productnotes	table,	249–250

products	table,	247

vendors	table,	246

savepoints,	transaction	processing,	235–238

scalablity,	143

scale,	143

schemas,	7

schemata,	7

search	criteria,	51

search	patterns,	69

security

access	control,	239–240

deleting	user	accounts,	241

passwords,	244

setting	access	rights,	242–243

user	accounts,	241

users,	240–241

UPDATE	statement,	179,	182

SELECT	clause,	ordering,	129

SELECT	statement,	33

AS	keyword,	95–96

AVG()	function,	111

combined	queries,	163

combining,	61

concatenating	fields,	94

COUNT()	function,	113

IS	NULL	clause,	58

ORDER	BY	clause,	44

retrieving

all	columns,	37–38

distinct	rows,	38

individual	columns,	33–35

multiple	columns,	36–37

unknown,	38

subqueries,	133–134

WHERE	clause,	51

self	joins,	154–157

semicolons	(;),	35

sequence	number,	ordering	by,	47

sequence	(SELECT	statement	clauses),	129

server-based	results	formatting

compared	to	client-based,	92

servers,	14

SET	command,	updating	tables,	180

SIN()	function,	107

software,	obtaining	for	Oracle	setup,	18–19

sort	direction,	specifying,	47–49

sorting

combined	query	results,	168–169

data,	43–45

by	multiple	columns,	45–47

by	nonselected	columns,	45

specifying	sort	direction,	47–49

versus	grouping,	126–128

query	results,	43–44

ascending/descending	order,	47–49

case	sensitivity,	49

by	multiple	columns,	45–46

nonselected	columns	and,	45

SOUNDEX()	function	101–102

spaces,	removing	(RTrim	function),	94–95

special	characters,	69

matching	with	regular	expressions,	83–84

SQL,	10–11,	15

advantages	of,	11

deleting/updating	data,	183

overview,	10

PL/SQL,	15

SQL	statements,	30,	33

case	sensitivity,	35

comments,	40–42

terminating,	35

white	space,	35

SQRT()	function,	107

statements

ALTER	TABLE,	190

clauses,	44

COMMIT,	237

CREATE	TABLE,	185–186

CREATE	VIEW,	197

DELETE,	181–183

DROP	TABLE,	193

formatting,	187

grouping	related	operators,	64

INSERT.	See	INSERT	statement

rollbacks,	238

defined,	235

SELECT.	See	SELECT	statement

stored	procedures

disadvantages	of,	207

overview,	205–206

usefulness	of,	206

UPDATE,	179–183

stored	procedures,	205–208

basic	syntax,	208–209

building	intelligent	stored	procedures,	210–213

creating,	208

disadvantages	of,	207

dropping,	213

executing,	209

overview,	205–206

programming	constructs,	209–210

reasons	for	using,	206–207

usefulness	of,	206

strings.	See	also	text	functions

datatypes,	252–253

empty,	compared	to	NULL	values,	189

wildcard	searching	and,	70

subqueries,	131

as	calculated	fields,	136–139

building	queries,	139

correlated	subqueries,	138

filtering	by,	131–135

FROM	clause,	139

maximum	amount	of,	135

SELECT	statements,	133–134

self	joins	and,	155–157

UPDATE	statement,	181

WHERE	clause,	135

SUM()	function,	110,	115–116

multiple	columns,	116

NULL	values,	116

syntax,	stored	procedures,	208–209

Sysdate(),	103

SYS	logins,	240

system	functions,	100

SYSTEM	login,	240

T
table	aliases,	153–154

table	rights,	243

tables,	6–7

calculated	fields

concatenating	fields,	92–96

mathematical	calculations,	96–98

overview,	91–92

Cartesian	Product,	145

concepts,	6–7

creating,	144,	185–187

CREATE	TABLE,	186

default	values,	189–190

NULL	values,	187–189

overview,	185

customers	table,	247

default	values,	189–190

deleting,	193

example	tables,	28–29

creating,	30–31

obtaining	table	scripts,	28–30

populating,	31–32

functions	of,	28,	245

inner	joins,	148

inserting	data,	172–174

from	queries,	176–177

joining	multiple	tables,	149–151

multiple	tables,	149–151

naming,	7

NULL	value,	checking	for,	58

NULL	value	columns,	187–189

orderitems	table,	248

orders	table,	248

overview,	141

performance	considerations,	150

products	table,	247

relational	tables,	141–143

renaming,	193

rows,	8

sample	tables,	245

updating,	179–181,	190–191

deleting	data,	181–182

primary	keys,	191–192

usefulness	of,	143

vendors	table,	246

virtual.	See	views

WHERE	clause,	145,	148

table	scripts,	obtaining,	29–30

Tan()	function,	107

terminating	SQL	statements,	35

testing	calculations,	98

text	functions,	100–101

list	of	common,	101–103

text	manipulation	functions,	100–102

To_Date(),	103

tools,	client	tools	(Oracle),	15–16

trailing	spaces,	72

transaction	processing,	233–235,	237–238

COMMIT	command,	237

explicit	commits,	236

managing,	235

overview,	233–234

ROLLBACK	command,	236

terminology,	235

transactions

controlling,	235

COMMIT,	236–237

ROLLBACK,	236

SAVEPOINT,	237–238

defined,	235

triggers,	223–224

AFTER	trigger,	228

BEFORE	triggers,	228

creating,	224–225

DELETE	triggers,	228–230

dropping,	225

INSERT	trigger,	225–228

multi-event	triggers,	231

overview,	232

UPDATE	triggers,	230–231

Trim()	function,	95

trimming	padded	spaces,	94–95

U
underscore	(_),	72–73

UNION

creating	combined	queries,	164–166

duplicate	rows,	167

rules	for,	166

sorting	combined	query	results,	168–169

versus	WHERE	clause,	168

unions,	163.	See	also	combined	queries

unknown,	59

unsorted	data,	query	results,	34

UPDATE,	179–181

guidelines,	183

security	privileges,	179,	182

subqueries,	181

UPDATE	triggers,	230–231

updating

data,	179

guidelines,	183

table	data,	179–181

deleting	data,	181–182

tables,	190–191

primary	keys,	191–192

views,	198,	203–204

Upper()	function,	101

user	accounts,	241

users,	access	control,	240–241

V
values

concatenation,	93

trimming	padded	space,	95

VALUES,	175

vendors	table,	246

views,	195–196

calculated	fields,	202–203

complex	joins,	198–199

creating,	197

data	retrieval,	204

filtering	data,	201–202

joins,	simplifying,	198–199

ORDER	BY	clause,	197

overview,	195

performance,	197

reasons	for	using,	196

reformatting	retrieved	data,	199–201

removing,	197

restrictions,	197

reusable,	199

rules,	197

updating,	198,	203–204

usefulness	of,	196

virtual	tables.	See	views

W–X–Y–Z
websites,	example	table	download	site,	29

WHERE	clause,	51–53.	See	also	HAVING	clause

checking	against	single	value,	54

checking	for	nonmatches,	56–57

checking	for	NULL	value,	58

checking	for	range	of	values,	57–58

combining,	61

AND	operator,	61–62

order	of	evaluation,	63–65

OR	operator,	62–63

in	queries,	163

data	retrieval,	202

DELETE	statements,	182

filtering	data,	124

filtering	groups,	125

joins,	145–148

operators,	53

checking	against	a	single	value,	54–56

checking	for	nonmatches,	56–57

checking	for	no	value,	58–59

checking	for	range	of	values,	57–58

parentheses,	65

quotes,	57

Soundex()	function,	102

subqueries,	134–135

UPDATE	statements,	179–180

versus	UNION,	168

wildcards,	69

white	space,	SQL	statements,	35

wildcard	(*),	37

wildcards,	37–38,	69

natural	joins,	158

wildcard	searches

LIKE	operators,	69

percent	sign	(%),	70

tips	for,	74

trailing	spaces,	72

underscore	(_),	72–73

working	environments,	21

creating

custom	workspaces,	24–25

dedicated	Oracle	instances,	22–24

worksheets,	multiple	worksheets,	28

writing	stored	procedures,	207

Code	Snippets

	Cover
	About This eBook
	Title Page
	Copyright Page
	Contents
	About the Author
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	What Is This Book?
	Who Is This Book For?
	Companion Website
	Conventions Used in This Book

	Lesson 1. Understanding SQL
	Database Basics
	What Is a Database?
	Tables
	Columns and Datatypes
	Rows
	Primary Keys

	What Is SQL?
	Try It Yourself
	Summary

	Lesson 2. Getting Started with Oracle and PL/SQL
	What Is Oracle?
	Client-Server Software
	PL/SQL
	Client Tools

	Getting Set Up
	What Software Do You Need?
	Obtaining the Software
	Installing the Software

	Summary

	Lesson 3. Working with Oracle
	Creating a Working Environment
	Creating a Dedicated Oracle Instance
	Creating a Custom Workspace

	Making the Connection
	A Quick Introduction to Oracle SQL Developer
	Creating and Populating the Example Tables
	Obtaining the Same Table Scripts
	Create the Tables
	Populate the Tables

	One More Look at Oracle SQL Developer
	Summary

	Lesson 4. Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Using Fully Qualified Table Names
	Using Comments
	Summary

	Lesson 5. Sorting Retrieved Data
	Sorting Data
	Sorting by Multiple Columns
	Specifying Sort Direction
	Summary

	Lesson 6. Filtering Data
	Using the WHERE Clause
	The WHERE Clause Operators
	Checking Against a Single Value
	Checking for Nonmatches
	Checking for a Range of Values
	Checking for No Value

	Summary

	Lesson 7. Advanced Data Filtering
	Combining WHERE Clauses
	Using the AND Operator
	Using the OR Operator
	Understanding Order of Evaluation

	Using the IN Operator
	Using the NOT Operator
	Summary

	Lesson 8. Using Wildcard Filtering
	Using the LIKE Operator
	Searching with the Percent Sign (%) Wildcard
	Searching with the Underscore (_) Wildcard

	Tips for Using Wildcards
	Summary

	Lesson 9. Searching Using Regular Expressions
	Understanding Regular Expressions
	Using Oracle PL/SQL Regular Expressions
	Basic Character Matching
	Performing OR Matches
	Matching One of Several Characters
	Matching Ranges
	Matching Special Characters
	Matching Character Classes
	Matching Multiple Instances
	Anchors

	Summary

	Lesson 10. Creating Calculated Fields
	Understanding Calculated Fields
	Concatenating Fields
	Using Aliases

	Performing Mathematical Calculations
	Summary

	Lesson 11. Using Data Manipulation Functions
	Understanding Functions
	Using Functions
	Text Manipulation Functions
	Date and Time Manipulation Functions
	Numeric Manipulation Functions

	Summary

	Lesson 12. Summarizing Data
	Using Aggregate Functions
	The AVG() Function
	The COUNT() Function
	The MAX() Function
	The MIN() Function
	The SUM() Function

	Aggregates on Distinct Values
	Combining Aggregate Functions
	Summary

	Lesson 13. Grouping Data
	Understanding Data Grouping
	Creating Groups
	Filtering Groups
	Grouping and Sorting
	SELECT Clause Ordering
	Summary

	Lesson 14. Working with Subqueries
	Understanding Subqueries
	Filtering by Subquery
	Using Subqueries as Calculated Fields
	Summary

	Lesson 15. Joining Tables
	Understanding Joins
	Understanding Relational Tables
	Why Use Joins?

	Creating a Join
	The Importance of the WHERE Clause
	Using Inner Joins
	Joining Multiple Tables

	Summary

	Lesson 16. Creating Advanced Joins
	Using Table Aliases
	Using Different Join Types
	Self Joins
	Natural Joins
	Outer Joins

	Using Joins with Aggregate Functions
	Using Joins and Join Conditions
	Summary

	Lesson 17. Combining Queries
	Understanding Combined Queries
	Creating Combined Queries
	Using UNION
	UNION Rules
	Including or Eliminating Duplicate Rows
	Sorting Combined Query Results

	Summary

	Lesson 18. Inserting Data
	Understanding Data Insertion
	Inserting Complete Rows
	Inserting Retrieved Data
	Summary

	Lesson 19. Updating and Deleting Data
	Updating Data
	Deleting Data
	Guidelines for Updating and Deleting Data
	Summary

	Lesson 20. Creating and Manipulating Tables
	Creating Tables
	The Basics of Table Creation
	Working with NULL Values
	Specifying Default Values

	Updating Tables
	Primary Keys Revisited
	Defining Foreign Keys

	Deleting Tables
	Renaming Tables
	Summary

	Lesson 21. Using Views
	Understanding Views
	Why Use Views
	View Rules and Restrictions

	Using Views
	Using Views to Simplify Complex Joins
	Using Views to Reformat Retrieved Data
	Using Views to Filter Unwanted Data
	Using Views with Calculated Fields
	Updating Views

	Summary

	Lesson 22. Working with Stored Procedures
	Understanding Stored Procedures
	Why Use Stored Procedures
	Using Stored Procedures
	Basic Stored Procedure Syntax
	Using Programming Constructs in Stored Procedures
	Building Intelligent Stored Procedures
	Dropping Stored Procedures

	Summary

	Lesson 23. Using Cursors
	Understanding Cursors
	Working with Cursors
	Creating Cursors
	Opening and Closing Cursors
	Fetching Cursor Data
	Using Cursor Data

	Summary

	Lesson 24. Using Triggers
	Understanding Triggers
	Creating Triggers
	Dropping Triggers
	Using Triggers
	INSERT Triggers
	DELETE Triggers
	UPDATE Triggers
	Multi-Event Triggers
	More on Triggers

	Summary

	Lesson 25. Managing Transaction Processing
	Understanding Transaction Processing
	Controlling Transactions
	Using ROLLBACK
	Using COMMIT
	Using Savepoints

	Summary

	Lesson 26. Managing Security
	Understanding Access Control
	Managing Users
	Creating User Accounts
	Deleting User Accounts
	Setting Access Rights
	Changing Passwords

	Summary

	Appendix A. The Example Tables
	Understanding the Sample Tables
	The vendors Table
	The products Table
	The customers Table
	The orders Table
	The orderitems Table
	The productnotes Table

	Appendix B. Oracle PL/SQL Datatypes
	String Datatypes
	Numeric Datatypes
	Date and Time Datatypes
	Binary Datatypes

	Appendix C. Oracle PL/SQL Reserved Words and Keywords
	Index
	Code Snippets

